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Abstract 

Developmental dyslexia (DD) is a neurodevelopmental disorder marked by persistent reading 

difficulties. While previous neuroimaging studies have revealed alterations in the functional 

connectivity of the ventral attention network (VAN) and cerebellum in DD, the effective brain 

connectivity of those networks remains understudied in DD.  

Dynamic Causal Modelling (DCM), a Bayesian framework, can estimate the direct causal 

influences (effective connectivity) and the hierarchical organization of activations in different 

brain regions. Here, for the first time, DCM was employed on functional magnetic resonance 

imaging (fMRI) data obtained by a visual-attentive tasks to investigate effective connectivity 

within the cortico-cerebellar visual attention network in typical readers (TR) and individuals 

with DD. To assess attention networks, twenty participants of TR and twenty participants of 

DD underwent fMRI while performing full-field sinusoidal grating and coherent motion 

sensitivity tasks. The investigated visual attention network included: left and right Crus I of 

the Cerebellum, left and right middle frontal gyrus, left and right middle visual temporal area, 

and bilateral primary visual cortex. Four different DCM models were specified and estimated 

to study effective connectivity patterns in two groups. Group-level analysis used Random-

Effect Bayesian Model Selection to compare multiple DCM models, aiming to find the best 

explanation for the neuroimaging data and select the best-fitting model for each group.  

Results revealed differential effective connectivity patterns between the two groups, 

indicating altered organization of the VAN and cerebellar involvement in DD. Specifically, 

while the TR group exhibited right-lateralized VAN connectivity, the DD group displayed 

compensatory connectivity patterns.  

The present study contributes to our understanding of the neural mechanisms underlying 

developmental dyslexia and highlights the importance of investigating effective brain 

connectivity in neurodevelopmental disorders to open new insights for diagnostic and 

therapeutic approaches. 

Keywords: Developmental dyslexia, Dynamical Causal Modeling (DCM), functional 
magnetic resonance imaging (fMRI), cerebellum, ventral attention network 
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1 Developmental Dyslexia 

Developmental dyslexia (DD) is a neurodevelopmental disorder, and although it has been 

well-researched it remains challenging to define it due to the lack of consensus on its causes. 

However, in broad terms,DD can be defined as difficulty in fluent word recognition and 

spelling despite intact sensory abilities, average intelligence, and educational opportunities 

(Peterson & Pennington, 2012).  

Cases of lost reading abilities and difficulties were described for the first time in the late 

1800s by German physician Adolf Kussmaul (Kuerten et al., 2020). He described reading 

deficits in stroke patients with intact oral and non-verbal reasoning skills. The concept of 

Dyslexia was introduced a few years after that by Rudolph Berlin to name those deficits 

(Stein, 2018). Today, these cases would be classified as acquired dyslexia, a reading disorder 

that occurs due to brain injury or lesions in individuals who previously had normal reading 

skills (Kuerten et al., 2020). In 1896 Pringle Morgan described a case of <congenital word 

blindness= in a child who found it impossible to learn to read, despite otherwise normal 

mental capabilities (Warnke et al., 2012).  Therefore, this can be considered a first-described 

case that aligns with what can now be classified as DD. Moreover, the idea of congenital 

word blindness as a visual processing problem selectively targeting written words was further 

developed in the upcoming years. Therefore, until the mid-20th century, DD was considered 

as an inherited impairment that primarily impacted the visual processing of words, while 

leaving oral language and non-verbal reasoning abilities relatively unaffected (Stein, 2018).  

Unlike spoken language, which most children acquire spontaneously, reading has to be 

explicitly taught (Stein, 2022). However, around 10% of children experience great difficulties 

in acquiring reading (Bertoni et al., 2019). Percentages of affected children can vary across 

languages. For example, it has been estimated that this neurodevelopmental disorder has a 

higher prevalence in the United States than in Italy (Lindgren et al., 1985). Moreover, twin 

and family studies suggest a high heritability of dyslexia. In that manner, although there are 

identified candidate genes associated with DD and replicated in at least one independent 

sample, such as DYX1C1, DCDC2, KIAA0319, FOXP2, C2ORF3, MRPL19, ROBO1, 

GRIN2B, and CNTNAP2(Mascheretti et al., 2017), it is still not possible to identify a single 

responsible gene (Stein, 2022). In addition, DD has common comorbidities with attention-

deficit hyperactivity disorder (ADHD), language impairment, and speech sound disorder 

(Peterson & Pennington, 2012).  
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The first theories of causes of DD assumed visual deficits as the main cause, however today it 

is clear that primary visual functions are not the ruth of the difficulty (Smirni et al. 2020). 

Morton and Frith (1995) proposed three possible levels of explaining DD that are behavioral, 

cognitive, and biological. Clinicians mainly use the behavioral level to diagnose dyslexia 

based on specific behavioral manifestations. On the other side, important understandings 

come from the cognitive level which links the causes of dyslexia to deficiencies in 

information-processing mechanisms (Kuerten et al., 2020). Explanation of DD on the 

cognitive level includes several theories about deficits in short-term or working memory, 

phonological awareness, incomplete automatization, and slow processing (Kuerten et al., 

2020).  

Researchers today are more prone to consider DD a multi-componential and complex disorder 

(Smirni et al. 2020; Pennington, 2006). In recent years, more attention has been put on the 

biological level and neural processes underlying DD. Many theories of underlying neuronal 

processes and causes have been proposed incorporating the importance of visual attention, 

and cerebellum functions for DD. Additionally, even though the cognitive and behavioral 

levels of clinical evaluations and tests are of great importance for diagnosing DD and 

understanding some psychological aspects, more is needed to gain the whole picture of the 

etiology and mechanisms of this reading disorder. For that reason, investigation of the 

neurobiological basis as well as the functional and effective organization of brain connectivity 

is crucial for further understanding and treatment of DD. Importantly, all three levels of 

explanation are equally significant and efforts on understanding the relation and causality 

between them should be made in future research.   
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1.1 Neural basis of Developmental dyslexia 

Reading is a complex cognitive function unique to humans and in modern societies, it is 

considered to be a fundamental skill that each individual is expected to acquire. However, 

written language was invented only around 6000 years ago, much later compared to spoken 

language (Stain, 2022). Consequently, the human brain did not develop reading-specific 

regions. Reading is thus processed by various distinct brain areas whose primary roles are 

other evolutionary older functions. In that sense, several theories have been proposed that 

attempt to explain the underlying causes and complexity of DD. 

According to one of the theories that have been proposed, the phonological theory, children 

with DDstruggle to acquire reading skills due to difficulties in developing phonemic 

awareness and the skill of separating the sounds within a word and matching them with their 

corresponding visual letters (Stein, 2018). Indeed, studies commonly show disruption in the 

left hemisphere language network in DD (Peterson & Pennington, 2012). However, reading is 

both a linguistic and a visual task (Valdois et al., 2019). Therefore, not only the regions for 

linguistic or phonological processing are affected in DD, but also visual areas. Moreover, the 

visual processing of words precedes phonological analysis, and thus often deficient visual 

processing is the cause of a reading problem. This deficiency extends to other critical visual 

processes involved in acquiring reading skills, such as sequencing letters, which demands 

timing or temporal processing (Stain, 2022). One specific type of cell plays animportant role 

in temporal processing, that is magnocellular (M) cells, large neurons found in the retina and 

further throughout the brain (Stain, 2018a). These M neurons form one of the two distinct 

visual pathways, the magnocellular (M) pathway. The second visual pathway, made primarily 

of Parvocellular (P) neurons, is known as the Parvocellular (P) pathway (Vellutino et al., 

2004). M neurons mainly convey information about movement, but they are not involved in 

color and detail processing (Stain, 2018a).  In more detail, as shown in Figure 1.1, from the 

retina the axons of the M neurons project to the magnocellular layers of the lateral geniculate 

nucleus (LGN) which is the main relay in the thalamus responsible for the parallel of 

processing visual information between the retina and the visual cortex (Mascheretti, 2021). 

On the other hand axons of P neurons project to the parvocellular layer of LGN. Further, from 

LGN M and P pathways project partially segregated to and beyond the primary visual cortex 

(V1). From V1 these pathways further separate in dorsal and ventral visual streams. 

Specifically, M neurons form the dorsal pathway with a key role in directing visual attention 
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and controlling eye movements during reading, while P neurons constitute the ventral 

pathway mainly carries information about details and colors (Stain, 2018a). 

The dorsal and ventral streams are two major pathways in the visual system, each serving 

distinct functions in processing visual information. The dorsal stream is primarily associated 

with tasks involving spatial perception, motion detection, depth perception, and visually 

guided actions like reaching and saccades. In contrast, the ventral stream is responsible for 

object recognition and perception (Vidyasagar, 2010). The dorsal stream is also known as the 

<where= pathway, while the ventral stream is known as the <what= pathway (Stain, 2018b).  

As the dorsal stream mainly consists of M cells it is considered blind to colors and that it 

instead processes contrast differences, low spatial frequencies, high temporal frequencies, and 

both real and illusory motion (Gori et al., 2015). The dorsal pathway projects via the middle 

temporal or 8motion9 area (MT/V5) to the posterior parietal cortex, and then to the prefrontal 

cortex (Stain, 2018b). Taking into consideration that V5 receives most of its input from M 

neurons (Vellutino et al., 2004),  this brain region is considered to be sensitive to motion.  

Moreover, functional Magnetic Resonance Imaging (fMRI) studies show decreased activation 

in V5/MT while watching moving patterns in DD (Stein, 2022). An example of visual 

pathways and dorsal and ventral visual streams illustration can be seen in Figure 1.1 below.  

 

 

Figure 1.1 Visual pathways. The Parvocellular and Magnocellular pathways from the retina reach the separate 

layers of the Lateral Geniculate Nucleus (LGN). Further, they project to the Primary visual cortex (V1) and form 

there dorsal and ventral visual streamsare formed (Mascheretti et al. 2021). 

While the role of the visual system in dyslexia is still a topic of ongoing research and debate 

several theories highlight the potential importance of understanding visual processing 
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differences in individuals with dyslexia. Furthermore, addressing visual processing deficits, 

particularly those related to the dorsal stream, may be important for developing effective 

interventions for dyslexia (Pellicano& Gibson, 2008). Indeed, evidence indicates a connection 

between motion sensitivity and the dorsal visual stream in DD. DD is frequently associated 

with challenges in visual motion processing, which might be related to abnormalities or 

impairments in the dorsal visual stream, particularly the magnocellular pathway (Talcott et al., 

2000). One's motion sensitivity can be tested by measuring the minimum number of randomly 

moving dots on a screen that must move in the same direction, for an observer to be able to 

tell their overall direction of motion. This task is known as a coherent motion sensitivity 

detection task (Cornelissen et al.,1998). Previous studies showed lower sensitivity to motion 

in DD, as well as lower activation in V5 (Eden et al., 1996).  

Based on the important role and characteristics of the magnocellular system in temporal 

processing and motion processing, the magnocellular theory of developmental dyslexia has 

been proposed. Particularly, it suggested that poor readers have a weak magnocellular 

function. Moreover, a connection can be made between poor reading skills and weaker 

magnocellular sensitivity, while such a relation is not observed with P neurons (Stein, 2018). 

Also, it has been suggested that in DD, M neurons are smaller compared to typical raiders, 

thus they sample moving stimuli at a lower spatial resolution and could be the main factor 

contributing to their reduced sensitivity to motion (Stein, 2003). The visual magnocellular 

system plays an important role in eye movements, visual search, and directing attention 

(Démonet et al., 2004). Moreover, M deficiency leads to the slower and less accurate 

deployment of visual attention (Vidyasagar, 2005). Attention deficits in dyslexia expand 

beyond the strictly magnocellular pathway and it involves broader attention networks of the 

brain which will be further addressed in the next section.   
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1.2 Visual Attention in Developmental Dyslexia 

Visual attention can be defined as a filter that limits the number of information that the visual 

system can process, in other words, it determines which information that reaches the retina 

can be processed by higher cortical areas involved in visual processing (Steinman et al., 

1996). Visual attention relies on the orienting component of the attention system which is 

composed of both the dorsal attention network (DAN) and ventral attention networks (VAN) 

(Petersen & Posner, 2012). While reading, rapid orienting of visual attention is necessary to 

accurately select relevant letters from irrelevant and cluttering letters before the process of 

letter-to-speech sound integration begins (Franceschini et al. 2012). Hence, visual attention 

networks may play a significant role in reading (Shaywitz&Shaywitz, 2008). For example, a 

longitudinal study done by Valdois and colleagues (2019) showed that visual attention span 

before literacy can predict reading fluency one year later, at the end of the first grade.  

The DAN is organized bilaterally, with the intraparietal sulcus and frontal eye field as main 

nodes (Vossel et al., 2014) and it is mainly responsible for orienting attention in space and 

helps maintain spatial maps, saccade planning, and visual working memory (Freedman et al., 

2020). On the other hand, the VAN is considered more literalized, mainly including regions in 

the right hemisphere (Vossel et al., 2014). The main regions comprising VAN are the 

temporoparietal junction (TPJ) and ventral frontal cortex including the middle frontal gyrus 

(MFG). Moreover, VAN is involved in spatial reorienting of attention to an unattended 

location, and directing attention to behaviourally relevant sensory stimuli that are outside the 

focus of processing (Corbetta & Shulman, 2002). Additionally,  based on the lesions of the 

frontal lobes, it has been concluded that these regions have an important role in guiding visual 

attention (Stein, 2003). Therefore, VAN may play a crucial role in reading by directing 

attention to external stimuli and then shifting it back to internal processes, such as teasing the 

meaning from the written words (Freedman et al., 2020). The MFG has been suggested as a 

region that is involved in this shift and acts as a convergence point by interrupting ongoing 

internal attentional processes in the dorsal network and redirecting attention toward external 

stimuli (Japee et al., 2015). In addition, although the cerebellum is traditionally associated 

with motor coordination, balance, and motor learning, it is increasingly recognized for its role 

in various cognitive functions, including attention (Brissenden & Somers, 2019). Particularly, 

findings suggest that the cerebellum plays a role in directing visual attention (Courchesne et 
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al., 1994), and impairments of this region have been associated with symptoms of DD. The 

role of the cerebellum in DD will be explained in more detail in the following section.  

M cells and magnocellular deficiency can also lead to slower and less accurate deployment of 

visual attention (Vidyasagar, 2005). For example, Steinman and colleagues (1997) suggested 

that visual attention is more evoked by luminance contrast stimuli which primarily activate M 

visual pathways and concluded that activation of the M pathway has an important role in 

triggering visual attention. Thus, an impaired magnocellular system in DD can contribute to 

attention deficiencies in DD.  

In conclusion, attention could be a vital component in reading and thus in reading difficulties 

as a result of dysfunctions in VAN, M pathway, and cerebellum. Moreover, the MFG could 

be one of the regions responsible for attention-shifting deficits observed in DD, and the 

cerebellum should also be considered as one of the key regions that should be investigated to 

understand cortico-cerebellar involvement in the guidance of visual attention. 
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1.3 Cerebellar Involvement in Developmental 

Dyslexia 

For a long time, the cerebellum was considered to have a role mainly in motor functions, 

however, in more recent years it has been established that the cerebellum has a role in various 

cognitive functions including attention and language (Schmahmann& Caplan, 2006). 

Additionally, it is believed now that the main function of the cerebellum is computing 

<internal models= dependent on inputs not only from motor components but also visual 

systems (D'Angelo, 2011). In particular, these internal models not only serve the function of 

motor control and movement but cognitive functions as well (Stein, 2023). Since the role of 

the cerebellum in dyslexia is still an area of active research, several theories have been 

proposed to understand the extent of its involvement and its implications for the development 

and treatment of dyslexia. One of the theories, the cerebellar deficit theory of developmental 

dyslexia, has been proposed by Nicolson and Fawcett (1990). This theory brings to light that 

behavioral and functional data suggest the majority of dyslexic children suffer from abnormal 

cerebellar function (Nicolson et al., 2001). Furthermore, it explains the full range of deficits, 

thus both the problems in reading and additional symptoms of DD like bad handwriting, 

laborious learning, and visual sequencing.  

One of the most prominent symptoms of DD is the failure to acquire and automatize reading 

and writing (Norton & Wolf, 2012). Further, these impairments of automatization in dyslexia 

have been associated with cerebellum dysfunction (Démonet et al., 2004). Nicolson, Fawcett, 

and Dean (2001) proposed a possible causal chain of cerebellar dysfunction on reading and 

writing skills that is summarised in Figure 1.2. This model links cerebellar dysfunction with 

phonological processing, motor skills, and problems with automatization. Additionally, 

attention difficulties in DD can be incorporated into the cerebellar hypothesis due to poor 

automatization (Démonet et al., 2004).  Given that the cerebellum receives input from the 

magnocellular system for timing and sequencing, it can be said that it is influenced by the 

broader dysfunction observed in magnocellular processing (Stain 2001). In addition to that, 

the cerebellum also plays an important role in eye movement control and attention required 

for reading. Particularly, Allen and colleagues (1997) demonstrated that attention tasks alone 

are sufficient for the activation of the cerebellum, and thus provided proof of its important 

role in attention.  
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Figure 1.2. Hypothetical chain of cerebellar effect on reading, writing, and spelling skills. Processes 

highlighted in the box representabnormalities in the cerebellum present birth resulting in mild motor and 

articulatory problems. These articulatory challenges lead in turn to a limited representation of the phonological 

characteristics of speech which subsequently manifests as phonological awareness difficulties around the age of 

5 that lead to subsequent problems in learning to read. Outside of the highlighted box are represented other 

routes that highlight probable problems outside the phonological domain, and indicate that the difficulties in 

learning to read, spell, and write might be the result of several inter-dependent factors (Nicolson et al., 2021). 

In summary, the cerebellum plays a key role in explaining deficits in DD. It affects the 

automatization of skills, guidance, and shifting of attention through eye movement control. 

Moreover, it is frequently found under-activated in DD in both reading and non-reading tasks 

(Nicolson et al., 2001).  
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1.4 Brain Connectivity in Developmental Dyslexia 

As reading requires multiple distinct brain regions, such as areas within the left hemisphere 

comprising the temporal, parietal, and frontal lobes (Cattinelli et al., 2013), and DD seems to 

be a multi-componential reading disorder, brain connectivity should be considered an 

important aspect for a better understanding of the underlying mechanisms and causes of this 

disorder.  

Studies suggest that functional brain connectivity is altered in DD. For example, Fin (2014) 

and colleagues found divergent functional connectivity within the visual pathway and 

between visual association areas and prefrontal attention areas compared to typical readers. 

Further, Schurz et al. (2015) found reduced functional connectivity between the left posterior 

temporal areas and the left inferior frontal gyrus as well as different connectivity patternsin 

the default brain network in dyslexia. Also, effective brain connectivity can also provide us 

with valuable insights by explaining causal relationships between brain regions. In the last 

years, increased interest in effective connectivity in dyslexia has occurred, however, more 

effective connectivity studies are needed to further explore how the dyslexic brain functions 

compared to the typical reading brain. Morken and colleagues (2017) using Dynamical Causal 

Modeling (DCM) found differences in connections going to and from the inferior frontal 

gyrus and the occipitotemporal cortex in theDD group compared to the typical reading group. 

Additionally, Di Pietro et al. (2023) found altered feedback connectivity between the inferior 

parietal lobule and the visual word form area in word processing in the DD group compared 

to both age and reading level matched typical readers group.  

Existing effective connectivity studies in DD typically include the arias of the 

occipitotemporal cortex, parietal regions, and frontal regions such as the inferior frontal gyrus 

(Cao et al., 2008; Morken et al., 2017; Di Pietro et al., 2023; Turker et al., 2023). However, to 

our knowledge, no studies have yet explored effective connectivity between the cerebellum 

and parts of the visual attention network, more specifically the MFG in DD. The present study 

aims to address this gap.   

https://www.sciencedirect.com/topics/neuroscience/visual-pathway
https://www.sciencedirect.com/topics/neuroscience/inferior-frontal-gyrus
https://www.sciencedirect.com/topics/neuroscience/inferior-frontal-gyrus
https://www.sciencedirect.com/topics/medicine-and-dentistry/inferior-parietal-lobule
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1.5 Genetic Components of Developmental 

Dyslexia 

DD is a heritable disorder, and family history is one of the most important risk factors 

(Shaywitz&Shaywitz, 2005). However, considering that reading is, in an evolutionary sense, a 

relatively new skill humans acquired it is unlikely special genes have evolved for reading. 

Therefore, DD likely involves the interaction of several genes (Stein, 2019). Moreover, it has 

been observed that an individual9s risk of being affected by DD is increased if other family 

members are already affected (Scerri & Schulte-Körne, 2010).  

Six genes have been proposed as potential contributors to DD (Peterson & Pennington, 2015), 

four of which are associated with a genetic system crucial for axon growth and neuronal 

migration during prenatal brain development affecting normal connectivity patterns (Smirni et 

al., 2020). Those identified genes are C2Orf3,  MRPL19 and DYX1C1, KIAA0319, and 

ROBO1 involved in axon growth and neuronal migration. However, identifying the specific 

genetic variations that impact dyslexia remains challenging (Fisher & DeFries, 2002) 

considering the high comorbidity of DD with other neurodevelopmental disorders (Scerri & 

Schulte-Körne, 2010). Additionally, DCDC2 has also been reported to take part in DD. This 

gene is related to several deficits in memory and auditory processing, as well as impairments 

in visual-spatial processing. Thus, DCDC2 can play an important role in reading abilities such 

as reading accuracy and speed of reading (Riva et al., 2019). 
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2 Neuroimaging 

2.1 Principles of Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) is a powerful non-invasive imaging technique used in 

both clinical and non-clinical settings. Moreover, it can provide cross-sectional images in any 

arbitrary plane and give anatomical as well as functional information (Rayan, 1997). The 

invention of MRI was preceded by two important insights. In 1971 Damadian discovered 

different proton relaxation properties in normal and tumor tissues. This led to the 

development of Nuclear Magnetic Resonance (NMR), which allowed the exploitation of 

different proton relaxations to have better differentiation among tissues than already existing 

techniques provided. The next breakthrough was made in 1973 when Lauterbur invented 

spatial encoding. This concept allows the assignment of an NMR signal to a specific spatial 

position, which was a significant step toward modern MRI. In the following years, many 

improvements have been made, making MRI widely used and one of the preferred imaging 

techniques for examining the brain,both for disorders and healthy cases (Cercignani, Dowell 

& Tofts, 2018). 

MRI is sensitive to the amount or density of protons or hydrogen (1H). The human body 

consists of about 60% water, and for the brain, that percentage goes up to 70, hence human 

tissue contains a large amount of 1H protons (Sands & Levitin, 2004). More specifically, 

MRI exploits the magnetic properties of 1H, due to which they act in the manner of compass 

in the magnetic fields (Rayan, 1997). Unlike other imaging techniques that are based on X-

ray technology (e.g. Computed tomography (CT) and positron emission tomography (PET) 

scanning), MRI does not use ionizing radiation (Caverly, 2015). Ionizing radiation contains 

levels of electromagnetic energy enough to alter the structures of tissues, which can be 

dangerous for human health (Zamanian& Hardiman, 2005). Instead, MRI uses specific 

wavelengths of electromagnetic dynamics that lie in a spectrum of radio wave frequencies 

that cannot modify and damage tissues (Yoshioka, 2012). As a result, MRI can be considered 

as a safe method. Today MRI can be considered the gold standard for neurological diagnostic 

imaging (Bolas, 2016).  
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2.1.1 Physics of MRI 

Magnetic Resonance is sensitive to the properties of 1H protons (Sharma, 2009). Protons are 

characterized by their positive electric charge and constant spinning around their own axis. 

Current made by spinning movements generates a magnetic field, making the proton behave 

in the manner of a small bar magnet (Gibby, 2005).  

Magnetic properties of 1H can be described in terms of its intrinsic angular momentum (P) or 

spin, which explains how a proton behaves in the presence of the magnetic field. This 

property allows protons to change and react to external magnetic fields. Spin depends on the 

spin quantum number (I) specific for each nucleus. Further, the spin quantum number 

depends on the mass number, making the quantum number 0 for all the nuclei with an even 

number of protons. Additionally, the quantum number is quantized, meaning it can only 

assume specific desecrate values, and be equal to a number multiple of ½. Given the spin 

quantum number I for a nucleus, it can have an m number of spin states, which can go 

from I to –I in steps of 1, as shown in equation 2.1. These number of states are linked to the 

energy states that a nucleus can assume in a magnetic field.  

� = ý, (ý 2 1), (ý 2 2), & , 2ý
2.1 

The intrinsic angular momentum or spin can therefore be mathematically defined as denoted 

in equation 2.2. In this equation, P is intrinsic angular momentum, I is the spin quantum 

number and h stands for Plank constant which indicates the relation between P and I.  

 

2.2 

Further, we can define the dipolar magnetic moment of a nucleus (μ), which is proportional 

to the intrinsic angular momentum P through the gyromagnetic constant gamma, as indicated 

in equation 2.3. The gyromagnetic constant gamma defines the behavior of a nucleus in a 

magnetic field, and it is specific for each nucleus.  

 

2.3 
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However, in MR imaging we are not interested in the spin of the individual proton, but in the 

average behavior of all protons in the sample. The overall response of the system, for example 

of the tissue in the brain, is given by the magnetization (M), which represents the sum of all 

dipolar magnetic moments in the given sample. Magnetization M is the vectorial sum of all 

dipolar magnetic moments per unitary volume as stated in equation 2.4 

 

2.4 

To exploit these properties of protons, an external magnetic force is needed. The external 

magnetic force used for MRI is usually referred to asþ0. þ0 is constant and it has the 

magnitude and direction. As already mentioned, 1H electromagnetic properties allow us to 

think about it as a bar magnet with a north and south pole.  

When it is absent the orientation of the dipolar magnetic moment (μ) is random and thus the 

sum of all spins is zero, making the Magnetization M alsozero. However, when the external 

magnetic field is present, spins align with the direction of it and start procession. Precession 

of protons around þ0is happening at the specific speed known as Larmor frequency which is 

directly proportional to the strength of the external magnetic field.    

0 = � =   Ā0  ∙ þ0 

2.5 

In Larmor frequency equation is indicated above (equation 2.5) which represents Larmor 

frequency (�), the gyromagnetic ratio (Ā0), a constant specific to a particular proton, and the 

strength of the external magnetic field (þ0).  

In this precession, 1H orients either parallel or anti-parallel to the þ0 as illustrated in Figure 

2.1 below. Parallel orientation is described as low energy, thus slightly more protons align 

parallel to the direction of þ0. This excess of spins in the lower energy state results in the 

positive magnetization around þ0.  
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Figure 2.1 Spin axis alignment. (a) In the absence of an external magnetic field, protons rotate around their 

axis in random directions. (b) In the presence of the external magnetic field  þ0, there is an excess of spins 

parallel aligned with the main magnetic field B0, producing M0 (Weishaupt et al. 2006). 

Waiting long enough so that the system reaches its equilibrium, the magnetization reaches its 

maximum and we refer to it as Mz or M0. Thus, the magnetization of spins will no longer be 

0, since they are no longer randomly oriented, instead, a new value is formed as noted in 

equation 2.6  

 

2.6 

Mo is formed in the z plane, orthogonal to the þ0 magnetic field. In MR imaging the signal is 

obtained from the net magnetization, however, the magnetic field þ0 is 60,000 times stronger 

than the resulting magnetization (Weishaupt et al. 2006), making it impossible to measure the 

signal. To solve this problem, radiofrequency pulse using electromagnetic field B1(t) can be 

introduced through radiofrequency coils. Electromagnetic field B1(t) must have several 

important properties to be able to interact with net magnetization: it must oscillate at Larmor 

frequency, it must be applied orthogonally to þ0, and it must have a certain amplitude and 

duration that is enough to transfer energy to M0, moving it out of its equilibrium, making it 

rotate for 90 ° and move to transverse or xy plane as also shown in the figure 2.2 below.   



27 
 

 

Figure 2.2 Effect of radiofrequency pulse. When radiofrequency pulse at Larmor frequency is introduced to 

spins the net Magnetization,  Mz flips for 90 ° and spins start precessing around B0 in the xy plane (Van Geuns 

et al, 1999). 

This process of energy absorption is known as an excitation of the spin system. As a result of 

excitation Mxy in the transverse plane is not in the perfect equilibrium, therefore over time 

Mxy goes back to the initial equilibrium of Mo and returns to processing around þ0.  
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2.1.2 Image reconstruction 

The initial MR data acquired is raw data consisting of transversal components of 

magnetization after excitation sampled over time from receiver coils. The raw data can be 

represented as a matrix with several frequency components, commonly referred to as k-space. 

K-space is a mathematical area representing the spatial frequency information in two or three 

dimensions of the object (Moratal et al., 2008). It consists of two axes, the horizontal kx axis 

which represents frequency information, and the vertical ky axes with the phase information 

as represented in figure 2.3 below. Therefore, k-space covers both phase and frequency 

encoding data. 

 

Figure 2.3 Illustration of the K-space.K-space with two axes: ky axes contain phase information and kx axes 

contain frequency information. The data from each different measurement fills in the different horizontal lines 

of the k-space (Weishaupt et al., 2006). 

While the center of the k-space contains information on the borders andcontours of the 

image, the details are contained in the edges of the k-space. However, this raw data alone is 

not enough to form an image. To achieve this way to encode the various components of 

signal coming from different spatial positions is needed. MR provides MR echo, a 

complicated signal, containing already mentioned frequency and phase-encoded spatial 

information that contains necessary spatial information to construct an image. Every 

complicated signal can be rewritten and represented as a sum of a series of simple waves 

(Gallagher et al., 2008). Fourier transform is performed for these purposes. This 
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mathematical technique is used to decompose the measured MR signal into its frequency 

spectrum. It breaks down the MR signal into the sum of the sine waves with different 

frequencies, phases, and amplitudes (Weishaupt et al., 2006).  

Spatial encoding implies three steps: slice selection, frequency encoding, and phase 

encoding. Three different magnetic field gradients are employed to perform these steps: Gx 

(frequency encoding or readout gradient), Gy (phase encoding gradient), and Gz(slice 

selection gradient). These gradients are applied to the main static magnetic field B0 resulting 

in position-dependent variations in frequencies encoded in the MRI signal. The frequency 

encoding gradient alters the main magnetic field by slightly changing local frequency causing 

a spatially specific pattern that allows the encoding of positions along the x-axis. On the other 

side, phase encoding is performed by briefly turning the phase encoding gradient on and off 

before the data collection period making some of the spin systems process faster than others 

depending on the spatial position along the gradient axis. Finally, the slice selection gradient 

is used to isolate specific slices or planes of image volume by introducing magnetic field 

variations along the z-axis. This gradient ensures that only the signals from the wanted slices 

during image reconstruction.  

In summary, the grid, also known as k-space, is formed from the raw data by combining 

frequency, phase, and slice information. Each pixel in this grid corresponds to a specific 

combination of phase and frequency. Complex signal within k-space can be represented as a 

sum of simple waves using Fourier transform. This mathematical method is employed to 

analyze functions or signals by examining their frequency characteristics. It decomposes a 

function or signal into its fundamental frequencies allowing the creation of the MR image 

(Gallagher et al., 2008). 
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2.1.3 Relaxation 

As discussed previously, the radiofrequency pulse B1 is a crucial component used to 

manipulate the spins of atomic nuclei in a magnetic field in order to measure the MR signal. 

B1 is essentially radiofrequency energy broadcasted at the right frequency so protons can 

absorb it and form transversal magnetization (Mxy). Transversal magnetization Mxy is not in 

the perfect equilibrium, after a certain amount of time it starts returning to the initial 

equilibrium state present before applying a B1 radiofrequency pulse inducing a signal in the 

receiver coil, known as Free Induction Decay (Brown et al., 2014). During this time, the 

phenomenon of relaxation is taking place.  According to Brown and Semeka (2011), 

relaxation can be defined as a process in which protons release the energy, they absorbed 

from the radiofrequency pulse while returning to their original state of equilibrium. Two 

main mechanisms govern this process of return to equilibrium:   

 Spin-lattice relaxation,  the longitudinal relaxation constant

 Spin-spin relaxation, the traverse relaxation constant

As transverse magnetization decays over time, the longitudinal magnetization along z axes of 

the main static magnetic field þ0 gradually recovers. Restoration of the longitudinal 

magnetization is possible due to the exchange of energy between spins and the surrounding 

matrix or lattice. This process is known as longitudinal relaxation or T1 recovery 

alternatively referred to as Spin-lattice relaxation, reflecting the characteristic energy 

exchange mechanism. The time needed for magnetization Mz to return to equilibrium after it 

was perturbed with the B1 radiofrequency pulse is characterized by time constant T1. The T1 

relaxation time is defined as the time needed for the system to recover to 63% of its 

equilibrium values after the B1 RF pulse (Sharma, 2009). Therefore, T1 can be represented 

as an exponential curve of the Mz growing back from 0 back to the M0. The T1 relaxation 

process is shown in Figure 2.4 below 
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Figure 2.4 T1 relaxation. Decay of transverse magnetization and regrowth of magnetization along the z-

axes.  (Weishaupt et al., 2006). 

It is also important to note that the exchange of energy is more efficient if there are more 

collisions between the spins and lattice, thus making longitudinal relaxation dependent on the 

microstructure of the tissue. Therefore, different tissue types have different T1 times.  

Another process occurring in parallel with longitudinal relaxation is transverse relaxation. 

Transverse relaxation or T2 is the process of disappearance of transverse relaxation Mxy 

caused by the loss of phase coherence. This phenomenon is also known as spin-spin 

relaxation because of the dephasing of the spins caused by their interaction with each other. 

Unlike in T1, here energy is not exchanged with the surroundings, but among spins themself. 

Therefore, T2 relaxation can be defined as the time taken by the magnetization Mxy to decay 

to 37% of its initial value (Sharma, 2009).  

When talking about T2, it is important to note that the coherence of spins is lost in two 

different ways. Dephasing occurs due to the pure spin-spin interaction independent of the 

strength of the external magnetic field. However, dephasing also occurs due to the 

inhomogeneities in the B0 caused by local variations of the Larmor frequency. These 

inhomogeneities contribute to the decay of the Mxy making the free induction decay faster 

than in the previously described dephasing. Time constant T2* (T2 star) is used to describe 

this mechanism and it is typically shorter than T2. Although T1 and T2 are independent 

processes they occur simultaneously. Both of them represent fundamental aspects of MR and 

are essential mechanisms for different image contrasts (Brown &Semeka, 2011). 
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2.1.4 Pulse sequences and different image contrasts 

Tissues have three intrinsic properties contributing to the signal intensity or brightness on an 

MR image: proton density, T1, and T2 (Weishaupt et al., 2006). Different types of tissues 

differ in the mentioned properties, for example. Furthermore, with sequences, it is possible to 

control the influence of each of those three characteristics on the signal, thus differentiating 

tissues.  Sequence controls radio frequency pulses B1 and magnetic field gradients, and 

therefore the generation of the signal. Two important sequence parameters dictate the time in 

which MR images are obtained:  

ï Repletion time (TR) 

ï Time Echo (TE) 

TR is the interval between successive excitation pulses, and TE is the period between 

excitation pulse and MR data acquisition. By controlling these two sequence parameters it is 

possible to form the contrast of the image depending mostly on one of the tissue properties 

mentioned above (McRobbie, 2005). TR represents the duration of the relaxation period 

between two excitations and therefore a key component of the T1 weighted images. If the 

repletion time is short, the image will be mainly affected by the T1, as tissues with short T1 

will regain most of the longitudinal during this interval and produce a stronger signal. 

Therefore tissues with short T1, in this case, would appear as bright in the MR image. In 

contrast, tissues with longer T1 would appear darker since they would not regain as much of 

the longitudinal magnetization in a given TR period. On the other hand, selecting a specific 

TE allows control over the T2 weighting of the image. Long TE ensures differentiating 

between tissues with short and long T2. Tissues with short T2 in the settings of long TE 

would appear darker since they already would lose most of their signal. On the contrary, 

tissues with long T2 would preserve more signal and thus appear brighter. Additionally, short 

TR provides better contrast and a lower signal-to-noise ratio (SNR), while longer TR results 

in a lower SNR. SNRis a quantity used to describe the effectiveness of an MRI system, it 

serves multiple purposes, including image quality assessment, contrast enhancement 

measurement, comparison of pulse sequences and RF coils, and overall system quality 

assurance (Dietrich et al., 2007). 

Selecting a specific relationship between TE and TR allows obtaining images with different 

image contrasts, as shown in Figure 2.5 To achieve T1 contrast, meaning that T1 mainly 
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affects the properties of the image, along with short TR the short TE is also necessary to 

avoid the T2 effects. T1 weighed images provide excellent contrast between fluids, the gray 

and white matter of the brain, hence they are often referred to as anatomy scans (McRobbie, 

2005). To obtain T2weighted images TR must be longer to avoid T1 weighting, and TE also 

must be longer to increase the effects of T2 weighting. In these images, fluids appear the 

brightest and other tissues darker. Therefore, T2 weighted images are often thought of as 

pathology scans, since they provide very good insight into abnormal fluid collection 

(McRobbie, 2005).    

 

Figure 2.5 T1 weighted and T2 weighted images. A - T1 weighted image; B - T2 weighted image (Ganzetti et 

al., 2015)  
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2.2 Functional Magnetic Resonance Imaging 

In the past, exploring the function of the brain and its regions was mostly out of reach. 

Although philosophers and scientists of those times had defined some theories and 

assumptions of a brain with different functions in distinct regions, establishing the function 

of specific anatomical areas relied mainly on rare cases of particular neural injuries. In recent 

years MRI has become the dominant imaging technique in neuroscience providing a non-

invasive way to study and understand the anatomy of the brain (Lerch, 2017). Moreover, 

MRI can also provide an insight into the function of the brain relaying on the cerebral blood 

flow. Even though functional magnetic resonance imaging (fMRI) is a relatively new tool, 

the idea behind it is quite old, tracing back to the 1800s (Tsougos, 2017). Italian scientist 

Angelo Mosso was one of the first to make the connection between blood flow and brain 

activity while observing patients with skull defects (Sandrone et al., 2014). Today, fMRI is 

widely used in both clinical practice and research. 

The fMRI uses MR imaging to map the cerebral hemodynamic changes occurring in the areas 

of increased brain activity (Bandettini, 2020). It is commonly used in research to trace brain 

activity caused by experimental stimuli or tasks (Chen&Glover, 2015) Additionally, fMRI 

can measure brain activity while participants are at rest providing valuable insights into 

intrinsic brain function that is calledresting-state functional connectivity or resting-state 

networks (Khanna et al., 2015). Therefore, the fMRI enables the reconstruction of brain 

activation patterns associated with various mental activities and the mapping of the brain 

regions in which they occur. 

Further, this technique is nowadays commonly used in attempts to understand the 

mechanisms of brain connectivity and activation patterns in neurodevelopmental disorders 

such as developmental dyslexia (Vellutino et al., 2004). The fMRI is relatively easy to 

perform using already existing standard MRI scanners, it does not use exogenous contrasts 

and more importantly it does not involve ionizing radiation (Glover, 2011). These 

characteristics make the fMRI more accessible for use and more adequate for studies 

involving children compared to some other neuroimaging techniques (e.g. positron emission 

tomography) (Casey et al., 2000). 
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2.2.1 Principles of fMRI 

Increased neural activity creates increased demand for oxygen which is transported through 

the body by blood. Hence, increased brain activity would result in increased oxygen levels 

and consequentially increased blood flow. That9s why the level of oxygen consumption, 

althoughit is an indirect measure, can be considered a good measure of brain activity 

(Goense&Debener, 2010). Furthermore, fMRI relies on this idea, measuring the oxygen level 

changes over time in response to the energy needs of activated neurons. Blood carries oxygen 

in hemoglobin, a metalloprotein molecule in red blood cells, which has two states with 

different magnetic properties: oxygen-bound and oxygen-unbound state (Tsougos, 2017). 

Oxygen bound state is also known as Oxyhemoglobin and it is diamagnetic, meaning it is 

weakly repulsed by magnetic fields. On the other hand, the oxygen-unbound state is called 

deoxyhemoglobin and it has paramagnetic properties thatmake it weakly attracted by 

magnetic fields (Heeger & Ress, 2002). While oxyhemoglobin does not change the local 

magnetic properties of the tissues, deoxyhemoglobin paramagnetic properties create the local 

inhomogeneities of the magnetic field by causing the dephasing and reduction in T2* based 

signal (Goense&Debener, 2010). When neural activity in a given brain area increases its 

metabolic rate of oxygen consumption also increases, therefore the decrease of 

oxyhemoglobin and increase of deoxyhemoglobin will occur resulting in a reduction in MRI 

signal. However, after this initial dip of oxyhemoglobin, the increase of the blood flow to the 

active area is triggered so the increased metabolic demand can be met. This increase in 

oxygen supply results in a higher concentration of oxygen than the activated neurons use and 

this is a higher concentration of oxyhemoglobin and a lower concentration of 

deoxyhemoglobin. Further, this leads to a more homogenous magnetic field and increased 

T2* signal. The concentration of oxyhemoglobin and deoxyhemoglobin depending on neural 

activation and their effect on MRI signal is illustrated in Figure 2.6. 
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Figure 2.6 Neural activation dependent concentration of oxyhemoglobin and deoxyhemoglobin. Blood 

oxygen level-dependent (BOLD) contrast depending on the hemodynamically driven changes in blood oxygen 

level due to the difference in Oxyhemoglobin (HbO2) and Deoxyhemoglobin (Hb) concentrations. During 

increased neuronal activation (b) increased blood flow and blood volume cause the reduction in Hb 

concentration in the blood, increase in the T2* weighted MRI signal, and thus brighter BOLD contrast 

compared to the baseline state (a)(Chen & Glover, 2015). 

The fMRI exploits described magnetic properties of hemoglobin, for an indirect measure of 

neuron activity through a blood oxygen level-dependent (BOLD) signal which captures the 

changes in levels of deoxyhemoglobin and oxyhemoglobin. The main concept behind BOLD 

is that the hemodynamic response to brain activation is reflected in the decrease in 

deoxyhemoglobin and an increase in oxyhemoglobin, resulting in increased field 

homogeneity and a larger MR signal (Deichman, 2016). A Hemodynamic Response Function 

(HRF) is used to depict the describedvascular response to the stimulus. HRF is a 

mathematical transfer function modeling neurovascular coupling by connecting neural 

activity with the BOLD fMRI signal (Rangaprakash et al., 2020). It is important to note that 

experimental data have suggested that HRF depends on both neural and non-neural factors 

(Bießmann et al. 2012). Therefore, the shape of HRF can differ across brain regions and 

individuals (Aguirre et al. 1998). The BOLD effect resulting from stimulus is not a static 

process, it evolves through a series of stages as illustrated in Figure 2.7. In the first moments 

of processing the stimulation in the activated brain region an increase in deoxyhemoglobin 

concentration occurs forming the so-called initial dip in the MR signal (Amaro & Barker, 

2006). After this initial dip, there is an increase in oxyhemoglobin levels which eventually 
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results in the peak of the observable fMRIsignal. Additionally, after the pick of signal 

activity reaches the plateau slightly under the amplitude of the pick. This usually occurs in 

prolonged stimulations. When increased neuronal activation stops before the MR signal 

returns to baseline it decreases below it. This stage of hemodynamic response is known as the 

undershot. This phenomenon results from a slower rate of blood volume normalization than 

the changes in blood flow that lead to high deoxyhemoglobin (Amaro & Barker, 2006).   

 

Figure 2.7Hemodynamic response function for a short-duration stimulus. In a specific brain region, the 

initial processing of stimuli triggers a temporary rise in deoxyhemoglobin concentration known as the initial 

dip. Subsequently, the MR signal undergoes changes reflecting neural activity, with an increase in the 

oxy/deoxyhemoglobin ratio resulting in a positive BOLD effect proportional to neural activity reaching the peak 

in the BOLD effect. This signal eventually stabilizes during sustained stimuli and returns to baseline levels post-

stimulus, often accompanied by an undershoot effect attributed to slower normalization of blood volume 

compared to blood flow (Amaro & Barker, 2006). 

2.2.2 Experimental Study Designs 

Designing an fMRI experiment requires careful consideration of multiple factors to ensure 

efficient capturing of the brain activation behind certain mental processes. The decision to 

use one of the possible fMRI paradigms will mainly depend on the specific research question 

and objective.  

The block design, initially adopted from PET studies, represents one of the earliest and 

simplest experimental designs employed in fMRI research. This approach consists of a series 

of periods in which the subject is either exposed to the stimuli or tasks or is at rest. These 

periods are referred to as epochs (Tsougos, 2017). Blocks of tasks or rest can vary in time, 
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with the usual average length between 10 and 30 seconds (Christidis& Reynolds, 2004). 

According to Tsougos (2017),  the advantages of this method are reflected in the robustness 

of results and increased statistical power. Additionally, block design offers another 

advantage: the power of detection due to the repetitive stimuli that create additive effects on 

brain activation (Dimoka, 2012). However, block design also has noticeable shortcomings. 

For example, it cannot differentiate between correct and error trials (Tsougos, 2017). Further, 

the repetitive nature of tasks and rest can be predicted by participants, resulting in habituation 

and anticipation of the stimuli. According to Christidis and Reynolds (2004), block design 

also doesn't provide information regarding activation response time courses because 

individual responses are lost within the block. Finally, certain pathological conditions rule 

out the application of this design approach altogether.  

In event-related design, stimuli are presented in arbitrary sequences, rather than in blocks, 

where stimuli are separated by the so-called inter-stimulus interval (ISI) (Tsougos, 2017). 

This design can overcome some of the downsides of the block design. It allows analyses 

related to individual responses to stimuli (Amaro & Barker, 2006), and it is useful for 

avoiding cognitive adaptation because of the randomization of the order of conditions 

presented (Tsougos, 2017). In addition, it provides greater flexibility for determining 

responses to novel or periodically presented stimuli or exploring changes over time 

(Christidis& Reynolds 2004). One major disadvantage of the event-related design is that the 

timing of single events results in a lower signal-to-nice ratio (Tsougos, 2017).  

To maximize the advantages of the two previously mentioned designs it is possible to 

combine them and perform mixed design. Here, subjects are presented with stimuli that are 

grouped as blocks, but the time (ISI), conditions between them, or both are randomized. The 

advantage of a mixed approach is the possibility of extracting brain regions exhibiting an 

item-related pattern of information processing (transient), or task-related information 

processing (sustained) (Amaro & Barker, 2006). On the other hand, this design involves more 

assumptions than other described designs, as well as a poorer estimation of HRF (Donaldson, 

2004). All three described experiential designs in fMRI research are represented in Figure 

2.8. 
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Figure 2.8 Different experimental designs in fMRI studies (Donaldson, 2004). 

Every brain region is characterized by basal activity even when a person is not performing 

any specific task or exposed to stimuli. This provides an opportunity for the exploration of 

different functional connectivity patterns of the brain. Another possible experimental 

paradigm, resting state fMRI is employed for these proposes. Furthermore, the fMRI 

represents an analysis of the spontaneous BOLD signal in the absence of any explicit task 

(Smitha et al., 2017). It has a simple acquisition protocol, a participant is simply lying in the 

scanner with instructions to try not to think about anything in particular (Tsougos, 2017). By 

using correlation analysis between the fluctuation of the signal of different brain regions 

fMRI allowed the exploration of many resting state networks that exhibit a stronger 

coherence of signal fluctuations between their parts compared to the rest of the brain. 

Examples of some of the resting state networks are shown in Figure 2.9.  
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Figure 2.9 Resting state networks. a - language network; b - auditory network; c - default mode network 

(Smitha et al., 2017) 
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3 Dynamical Causal Modeling 

3.1 Brain Connectivity 
Understanding brain networks and interconnections is essential for comprehending the brain's 

complex functions and roles in various mental processes. Furthermore, in the past few 

decades, technological improvementshave provided non-invasive ways to explore those 

complicated patterns of brain connectivity in the healthy brain and observe changes in 

pathologies (Rubinov&Sporns, 2010). Links between distinct neuronal systems can be 

described through three different types of connections:  anatomical links or anatomical 

connections, statistical dependency or functional connections, and causal interactions or 

effective connectivity (Sporns, 2007).  

Anatomical, also known as structural connectivity, can be defined as the presence of white 

fiber tracts that directly connect different brain regions (Rykhlevskaia et al., 2008). For 

instance, Diffusion tensor imaging (DTI) can provide an opportunity for non-invasive 

investigation of structural connections of the human brain (Sporns et al., 2005). Moreover, 

DTI can also allow estimation of the dominant orientation of axons in a specific section of the 

white matter tract (Rykhlevskaia et al., 2008).  

Friston (1994) defined functional connectivity as temporal correlations between spatially 

remote neurophysiological events. He also pointed out that functional connectivity is an 

observed correlation and it does not provide any direct insights into how those correlations are 

mediated. Functional connectivity can be measured with several techniques including 

functional magnetic resonance imaging (fMRI), positron emission tomography (PET), 

electroencephalography (EEG), magnetoencephalography (MEG), and the event-related 

optical signal (Rykhlevskaia et al., 2008).   

However, more than functional connectivity is needed to explain how regions communicate 

and interact with one another (Rajapakse & Zhou, 2007). Thus, to fully understand how 

information is processed in the brain it is important also to consider effective connectivity. 

Effective connectivity can be defined as the influence one neural system exerts over another, 

either at a synaptic or cortical level (Friston, 1994). Friston and colleagues (2003) developed a 

new method for estimating effective connectivity called dynamical causal modeling (DCM), 

which represents the generalization of the proposed <covariance structural equation 

modeling= technique that assigns effective connection strengths to anatomical pathways that 
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best match observed covariances in a given task.DCM utilizes a Bayesian framework to 

estimate and draw inferences regarding directed influences among variables (Sporns, 2007). 

This method will be described in more detail in the following parts of this chapter.  

The relation between structural, functional, and effective brain connectivity is still not fully 

known. However, two mechanisms to explain the link betweenthese different types of brain 

connectivity have been proposed: segregation and integration ( ). In 

particular, segregation involves specialized neurons and brain regions organized into distinct 

groups, forming segregated cortical areas. On the other hand, integration facilitates 

coordinated activation among distributedneuronal populations, allowing for coherent 

cognitive and behavioral states to emerge. The interaction between segregation and 

integration in brain networks produces information that is both diverse and integrated, 

resulting in complex patterns (Sprons, 2007). Models of structural, functional, and effective 

brain connectivity are illustrated in Figure 3.1.  

 

Figure 3.1 Modes of brain connectivity.Sketches at the top illustrate structural connectivity (fiber pathways), 

functional connectivity (correlations), and effective connectivity (information flow) among four brain regions in 

the macaque cortex. Matrices at the bottom show binary structural connections (left), symmetric mutual 

information (middle), and non-symmetric transfer entropy (right) (Honey et al., 2007).  

http://var.scholarpedia.org/article/Mutual_information
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3.2 Conceptual Basis of Dynamical Causal 

Modeling 

Dynamical Causal Modeling (DCM) is the Bayesian framework for inferring hidden neural 

states from measured brain activity (Stephan et al., 2010). It was developed to estimate 

coupling among brain regions and how that coupling is influenced by experimental changes 

(Marreiros et al., 2010). Since its introduction in 2003 by Friston and colleagues, it became a 

widely used method in various branches of cognitive neuroscience such as motor processing, 

memory, language, perception decision-making, and most importantly for the present study 

visual attention (Stephan et al., 2010). DCM can be exploited on different techniques 

including electroencephalography (EEG), magnetoencephalography (MEG), and local field 

potentials (LFPs) (Kahan, &Foltynie, 2013). However, here the focus will be on DCM for 

fMRI.  

The main idea behind the DCM is to look at the brain as a non-linear dynamic system 

susceptible to inputs and in return produce outputs (Friston et al., 2003). It tries to estimate 

the parameters of a reasonably realistic neuronal system model that can accurately predict 

how changes in neural activity would affect the BOLD signal, which is measured using fMRI. 

In the context of DCM, the BOLD signal can be considered a dependent, measurable variable 

(y) of the underlying neural activity (z) that cannot be measured with fMRI, and thus, the 

neural activity is referred to as the <hidden state variable= (Kahan, &Foltynie, 2013). The 

causal interactions among these hidden state variables, such as specific aspects of neuronal 

population activity, are represented by differential equations that describe how the current 

state of one neuronal population influences the dynamics, or rate of change, of another 

neuronal population through synaptic connections and how these interactions change under 

the influence of external experimental manipulations or intrinsic brain activity (Stephan et al., 

2010). Therefore, DCM models how neural activity is influenced by external factors that are 

controlled in experiments. These external influences, referred to as perturbations, are 

represented by inputs "u"  that can affect the neural activity in two main ways: through 

driving inputs that can elicit responses through direct influences on specific regions or they 

can change the strength of coupling among regions through modulatory inputs (Ashburner et 

al., 2014).  
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Mathematically, neuronal responses can be written as shown in equation 3.1 below: 

ż = ����   

3.1 

where ż is the rate of change in each brain region or neural response, vector z is the state or 

level of activity in each region and f is a function describing the change in brain activity in 

response to experimental inputs u (Zeidman et al., 2019a). When accounting for the changes 

derived due to experimental manipulation neuronal state equation can be written as  

ż = ���� = (z, u,Ā )  

3.2 

This equation describes changes in neural activity resulting from experimental manipulations. 

Encoded within a vector z, neural activity across all modeled brain regions represents hidden 

states, not directly observable via fMRI. The function ƒ embodies the neural model, 

describing neuronal dynamics and specifying how changes in neural activity (z) over time 

arise from experimental stimuli (u), current state (z), and connectivity parameters (Ā). 

According to Ashburner and colleagues (2014) in DCM has a bilinear form, thus an effective 

connectivity model can be represented as  

ż =  ýÿ + ∑ þÿþÿÿ + ÿþÿ
ÿ=1  

 

3.3 

Further, parameters A, B, and C from this bilinear neural state equation can also be expressed 

as partial derivatives of:  
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ý =  ��ÿ | þ = 0
þ(ÿ) =  �2�ÿ�þÿÿ =  ��þ | ÿ = 0

3.4 

These parameter matrices, measured in hertz (Hz), describe three key causal components that 

drive neural dynamics: parameter matrix A specifies the average or baseline effective 

connectivity, matrix B specifies the modulation of effective connectivity due to experimental 

condition k, and parameter matrix C represents the sensitivity of each region to driving 

inputs. In other words, Matrix A is the rate of change in neural response due to neural activity 

z, i.e. the effective connectivity. Matrix Bj is the rate of change in the effective connectivity 

(matrix A) due to the modulatory inputs. and matrix C is the rate of change of the neural 

response due to the driving inputs (Zeidman et al., 2019a).  

In essence, this equation describes how the interactions between different brain regions 

change over time based on both their inherent connections (matrix A) and external inputs 

(matrix B) while also considering any external perturbations (matrix C).  

Further, it is also crucial to take into account and incorporate the inhibitory self-connection 

properties. These parameters, determined by the elements along the main diagonal of the 

average connectivity matrix A and modulatory input matrices B(k), regulate the self-

inhibition within each region. In other words, they control the region's gain or responsiveness 

to input stimuli. Additionally, these parameters are typically negative, to prevent runaway 

excitation within the network. To achieve this, the average connectivity matrix A and 

modulatory input matrices B(k) are divided into two components: intrinsic self-inhibition 

within regions and extrinsic connectivity between regions and in this way (Zeidman et al., 

2019). This can be represented by equation 3.2.5:  

þ =  20.5 ∙ �ý�(ý�) ∙ �ý� ∑ þ�(Ā)þĀ (ý)Ā ý� + ∑ þ�(Ā)þĀ (ý)Ā
3.2.5 
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where 0.5Hz is the default strength of the self-connections. Matrices AI and B(k)I represent 

the self-connections expressed as unitless log scaling parameters and matrices AE and B(k)E 

represent between-region connections, measured in units of Hz. 

Experimental stimulation invoices the neuronal activation in specific regions causing changes 

in volume and deoxyhemoglobin and therefore the observable BOLD response (Friston et al., 

2003). DCM combines neural dynamics models with hemodynamic models which are 

experimentally validated and biologically probable to explain how neuronal activity 

translates into a BOLD response (Ashburner et al., 2014). The Ballon model was developed 

by Buxton and colleagues (1998) for this purpose, and it explains the process of changes in 

blood oxygenation that are measured with fMRI caused by changes in neural activation 

(Penny et al., 2007). This model consists of a set of differential equations. The hemodynamic 

model can be written as follows:  

y=h(x,u,θ)+Xβ+ϵ        

3.5 

This function specifies biophysical processes that transform neural activity z into the BOLD 

response y using parameters θ (Zeidman et al., 2019).  

The summary of the Conceptual basis of Dynamical Causal Modeling is illustrated in Figure 

3.2.  
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Figure 3.2 Schematic summary of the conceptual basis of DCM.  (Ashburner et al., 2014) 

In addition to the described parameter matrices and hemodynamic model, DCM also 

incorporates the General Linear Model (GLM) similar to standard GLM analysis. However, 

GLM used by DCM differs in one key concept: it allows an experimenter to additionally 

consider the effects of other regions on their neural model (Kahan, & Foltynie, 2013). Neural 

states (z) causing BOLD data (y) in DCM are sensitive to both exogenous inputs (as in the 

standard GLM analyses), and also to inputs from other regions. Additionally, convolution 

models in DCM are nonlinear (Kahan, & Foltynie, 2013). Friston and colleagues (2003) 

highlighted that the GLMs used in typical data analyses are just cases of bilinear models that 

embody more assumptions.  

In summary, DCM provides a framework for defining models that describe the effective 

connectivity between different brain regions, estimating their parameters, and evaluating 

hypotheses (Zeidman et al., 2019a). DCMs are dynamic, employing differential equations to 

describe neuronal dynamics and they are causal, illustrating how the dynamics of one 

neuronal population influence another, and how those interactions are modulated by 

experimental manipulations or endogenous brain activity (Stephan et al., 2010). Although 

DCM is a complex framework Statistical Parametric Mapping (SPM) run through MatLab 

(The MathWorks Inc., Version R2022b) provides a relatively easy way of performing DCM 

in a user-friendly interface.  
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3.3 Bayesian Model Selection and Estimation 

Every modeling approach encounters the challenge of model selection, which involves 

determining the best model among several alternatives based on observed data (Ashburner et 

al., 2014). DCM utilizes the Bayesian model selection (BMS) for this issue (Stephan et al., 

2010). BMS in DCM refers to the process of comparing multiple DCM models and 

determining the most appropriate model among a set of candidate models that describe the 

connectivity among brain regions. This comparison is based on Bayesian principles, where 

each model is assigned a probability or "evidence" based on how well it fits the data and how 

complex it is. It balances the trade-off between model fit and complexity to determine the 

most plausible model given the data. Further, it allows us to compare different hypotheses or 

models about how brain regions interact and are influenced by experimental manipulations 

(Stephan et al., 2009).  

In more detail, BMS is a statistical procedure that computes the probability of the data y, 

given some model m, also known as model evidence p(y m) (Stephan et al., 2010). The model 

evidence can be used to compare a series of models and determine which of them is the most 

likely to have generated the observed data. The model evidence is obtained by integrating out 

dependencies on the model parameters as denoted in equation 3.6:  

 

p(y|m)=∫p(y|θ,m)p(θ|m)dθ 

3.6 

Furthermore, the model evidence also serves as a measure of generalizability (Stephan et al., 

2010). This emphasizes the importance of considering model complexity when selecting the 

model. This can be considered a crucial step because there is a trade-off between model fit 

and generalizability. In the Bayesian context, models are usually compared through the Bayes 

factor to determine which model represents the optimal balance between fit and complexity 

(Ashburner et al., 2014) as shown in equation 3.7: 

�(þ, �) =    �(þ|�, �)�(�|�)�(þ|�)
3.7 
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This equation is an application of Bayes' theorem, where we update our beliefs about the 

model parameters (θ) based on the observed data (y) and prior beliefs about the model 

parameters. Where p(θ|y, m) represents the posterior probability of the model parameters (θ) 

given the observed data (y) and the model (m); p(y|θ, m) is the likelihood function, 

representing the probability of observing the data (y) given the model parameters (θ) and the 

model (m). It measures how well the model with specific parameters explains the observed 

data; p(θ|m) is the prior probability distribution of the model parameters (θ) under the model 

(m). It represents our beliefs about the model parameters before observing any data; p(y|m) is 

the marginal likelihood or evidence of the model (m). It represents the probability of 

observing the data (y) under the model (m), integrating all possible values of the model 

parameters. It measures how well the model, on average, explains the observed data across all 

possible parameter values. In the context of model selection, comparing the evidence (p(y|m)) 

of different models allows us to evaluate the trade-off between model fit (how well the model 

explains the data) and model complexity (the number of parameters or complexity of the 

model) (Stephan et al., 2007).  

According to Stephan and colleagues (2010), BMS is the first and essential step of every 

DCM analysis regarding whether it relies on inference on model space or inference on 

parameter space. Inference on model space is used when the main interest is aspects of the 

model structure. In this case, either fixed effects BMS (FFX BMS) or random effects BMS 

(RFX BMS) can be used. FFX BMS is typically used when we assume that the optimal model 

structure is identical across subjects, on the other hand, RFX is applied when that is not the 

case (Stephan et al., 2010). Further, RFX can compute the likelihood that a particular model 

generated the data of a randomly selected subject as well as the probability that one model is 

more likely than any other model, given the group data (Stephan et al., 2010). Therefore, RFX 

assumes heterogeneity of model structure across subjects. Furthermore, the usage of BMS has 

been extended to compare models in group studies and compare different families of similar 

models allowing DCM studies to use model comparison for insights into pathological 

mechanisms (Kahan, & Foltynie, 2013). 

On the other hand, if one wants to understand the neurophysiological mechanisms represented 

by specific parameters of the given model, then inference on the parameter space is needed. 

Here, the further type of analysis depends on whether one is interested in inferences on the 

optimal model or parameters of all models. If the first is the case, then FFX analysis of 

parameter estimates should be performed if the optimal model structure is assumed to be 



51 
 

identical across subjects, more specifically Bayesian model averaging can be used (BPA) 

(Stephan et al., 2010). BPA is The routine that generates a new DCM by averaging 

parameters from multiple fitted DCMs. These DCMs can be averaged across sessions or 

subjects. The averaged model can then be analyzed using standard DCM review options to 

examine parameter contrasts. The resulting inferences represent a Bayesian Fixed Effects 

analysis.BPA can be performed in MatLab through the implemented spm_dcm_bpa function. 

If an identical structure is not assumed RFX analysis of parameter estimates should be used 

(Stephan et al., 2007).  

On the contrary, if one is interested in inference on parameters of all models Bayesian model 

averaging (BMA) should be performed which considers the entire model space and computes 

weighted averages of each model parameter. These weights are determined by the posterior 

probability associated with each model. BMA is often used when no single model 

outperforms the others. Additionally, it can be used for comparing parameter estimates across 

groups, such as patients versus controls, particularly when BMS indicates a group difference 

regarding the optimal model (Stephan et al., 2010). Similarly, as in the case of BPA, MatLab 

has implemented the spm_dcm_bma function for performing this analysis.  

The decision between different approaches in specifying and estimating DCM models 

depends on the specific research question and formed hypothesis. All described techniques are 

summarised in Figure 3.3. 
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Figure 3.3 Different approaches for specifying and estimating DCM models. FFX - Fixed effects; RFX - 

Random effects; BMS - Bayesian model selection; BPA - Bayesian parameter averaging; BMA - Bayesian model 

averaging (Stephan et al., 2010). 
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3.4 First and Second Level Analysis 

First-level analysis refers to the within-subject level. DCM forward or generative model is 

used to generate neuroimaging time series from the underlying causes, such as neural 

fluctuations and connection strengths (Zeidman et al., 2019a). Specifying the DCM forward 

model further allows the simulation of the data under different models and determining 

which simulation matches the observed data the best. This process typically includes two 

steps: Bayesian model inversion and comparison. Model inversion refers to finding the best 

balance of trade-offs between the accuracy and complexity of the model through the model 

evidence described in the previous section. The balance between complexity and accuracy is 

important to avoid <overfitting= where increasingly complex models may begin to 

incorporate noise that is unique to a particular dataset and therefore become less 

generalizable (Ashburner et al., 2014). Further, in the Bayesian model, the comparison 

hypothesis is tested by comparing the model evidence of different specified models.  

After determining the connectivity strengths for each subject, the next task is to measure the 

similarities and variations across subjects. This allows testing differences between groups, for 

example, one could test if certain connections are altered by pathology compared to the 

healthy control group. Thus, second-level analysis refers to inter-subject variability in 

effective connectivity. After the DCM is specified and estimated for each subject the 

parameters of interest are then gathered and analyzed collectively at the second level using a 

General Linear Model (GLM), therefore individual differences in connection strengths are 

decomposed into the hypothesized group-level effects (Zeidman et al., 2019b). The process 

of first and second-level analysis is shown in Figure 3.4.  
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Figure 3.4 First and second level analysis. The neural model is driven by experimental stimuli. The resulting 

neural activity causes a change in hemodynamics, mediated by neurovascular coupling, and consequently the 

generation of the BOLD signal. The addition of observation noise gives the fMRI time series (Zeidman et al., 

2019a). In the first level analysis forward DCM modeldescribes how neural activity causes the fMRI time series 

of each subject (second row). The parameters from the neural part of the model are then taken to the group level 

(Zeidman et al., 2019b). 

In summary, DCM analysis consists of two main steps First and Second level analysis. First 

level analysis focuses on modeling and estimating DCM parameters at the individual subject 

level, while second-level analysis involves taking and comparing results across multiple 

subjects to make population-level inferences about the underlying neural dynamics. 

Both First and Second level analysis demand DCM specification and estimation.  Specifying a 

DCM involves defining the structural and dynamical properties of the model while estimating 

a DCM consists of fitting the model to observed data to infer the values of its parameters. 

Estimation of DCM is assessing how well the model fits the observed data to evaluate its 

validity. DCMs can be specified with the spm_dcm_specify function implemented in MatLab 

(2002-2017 Wellcome Trust Centre for Neuroimaging). This function is used to specify the 

DCM structure, including the neural model, experimental inputs, and priors on model 

parameters. For DCM estimation, the spm_dcm_estimte function (2002-2012 Wellcome Trust 

Centre for Neuroimaging) which implements Bayesian inference to estimate the posterior 

distribution is used.  
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4 Materials & Methods 

4.1 Participants 

Data used in this study was acquired from the previously published study by Mascheretti et 

al., 2021. The original sample size contains 90 participants, 45 with DD and 45 with TR 

participants. However, for both groups, the overall participant cohort was adjusted to the 

occurrence of the DCDC2 genetic mutation in the general population, based on the study by 

Mascheretti et al.,2021, with two participants for each group included with genetic 

involvement. Additionally, two participants from the DD and two from the TR group were 

excluded from the study due to the challenges in detecting a significant activation (i.e., the 

number of active voxels) in the VOI extraction procedure. Therefore, the current study 

includes the final number of participants of twenty children with the clinical diagnosis of DD 

(age = 14.08 ± 1.55; 6 females) and twenty TR children (age = 13.53 ± 1.8; 7 females). All 

participants belonged to Caucasian families and were native Italian speakers with no certified 

neurological, neurodevelopmental, visual, hearing, intellectual, or motor disabilities. Further, 

for all participants written informed consent was signed by both parents.  

4.2 Neuropsychological Assessment 

All the children underwent the following neuropsychological assessment that was 

administered by the previously published study by Mascheretti et al.,2021:  

1. IQ: Estimated using the vocabulary and block design subscales of the WISC-III 

(Wechsler, 2006) 

2. Reading: Evaluated through text reading (Cornoldi & Colpo, 1995; Cornoldi & Colpo, 

1998), single unrelated words, and pseudo-words reading tests (Sartori et al., 1995; 

Arina et al., 2013). 

3. Verbal Working Memory (VWM): Assessed using the Single Digit Forward Span, 

Single Digit Backward Span, Single Letter Forward Span, and Single Letter Backward 

Span tasks (Reynolds & Bigler, 1994). 

4. Phonological Skills: Measured by the nonword repetition test (NWR) (Bertelli & 

Bilancia, 2006). 

5. Hand Preference: Determined using the Briggs and Nebes Inventory (BNI) (Briggs & 

Nebes, 1975). 
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6. ADHD Traits: Assessed with the Conners9 Parent Rating Scales–Revised: Long 

version (CPRS-R) (Conners, 1990; Conners et al., 1998; Nobile et al., 2007), focusing 

on two subscales: DSM-IV-inattention (DSM-IV-I) and DSM-IV-

hyperactivity/impulsivity (DSM-IV-HI). 

Scores of the neuropsychological assessment are shown in the Appendix.  

  



58 
 

4.3 MRI Acquisition Protocol 

A 3T Philips Achieva d-Stream scanner with a 32-channel head coil was used by Mascheretti 

et al. (2021) for acquiring fMRI data. Visual stimuli were developed with Presentation® 

software created by Neurobehavioral System Inc., Berkeley, CA, US,  and presented via a 

VisuaStim digital device for fMRI (Resonance Technology Inc., Northridge, CA, USA). A 

two-display MRI-compatible goggles with a 60 Hz frame rate and 800 x 600 spatial resolution 

(4/3 aspect ratio) subtending a horizontal visual angle of 30ç were used. Additionally, an 

MRI-compatible pad was used for recording participants' answers and reaction times.  

MRI protocol contained: 

1. Anatomical images acquisition: T1-weighted (T1W) performed with 3D Turbo Field 

Echo sequence for obtaining high-contrast structural images with Field Of View 

(FOV) = 256 × 256 × 175 mm3, voxel size 1 × 1 × 1 mm3, Time of Repetition (TR) = 

shortest (~8.1 ms), Time of Echo (TE) = shortest (~3.7 ms), Flip Angle (FA) = 8ç.  

2. fMRI acquisition: T2*- weighted Gradient Echo planar sequence with FOV = 240 × 

240 mm2 , voxel size = 3 × 3 mm2 , slice thickness = 3 mm, slice gap = 0.5 mm, slice 

number = 39, TR = 2 s, TE = 26 ms, FA = 90ç.  
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4.4 fMRI task design 

All participants performed two tasks: the coherent motion sensitivity detection task and the 

full field sinusoidal grating task (Mascheretti et al.,2021).  

Coherent Motion Sensitivity Detection Task 

Motion coherence sensitivity was assessed by the Coherent Motion Sensitivity Detection task 

with radial motion pattern (expansion and contraction). Stimuli included 50 small black dots 

and 50 small white dots with dimensions of 20 arc mins presented on a mean luminance gray 

background for 250 ms. A portion of the presented dots moved coherently at a rate of 10 

degrees per second with a restricted lifetime of 8 frames at a frame rate of 60 Hz moving 

either towards the center (contraction), or away from the center (expansion). Meanwhile, the 

rest of the dots appeared randomly positioned in each frame. Stimuli were presented in three 

different levels of coherent motion of the dots: 6%, 15%, and 40%. The protocol included 8 

repetitions for each combination of coherence level and motion direction, hence 48 blocks of 

stimuli. Stimuli were presented in pseudorandom order with the condition that the same 

coherence would not appear in more than two consecutive blocks regardless of the direction 

of motion. At the beginning of each block, the fixation point subtending 0.2ç visual angle was 

presented at the center of the screen for 0.5s. After the stimulus participants were given 4s to 

answer whether the dots were expanding or contracting by pressing an adequate button on the 

response pad. Participants were instructed to maintain fixation throughout the run and to 

provide a response even if they were unable to detect the direction of coherent motion. In 

between every stimulus block, there was a 4.25s inter-stimulus waiting period. The protocol is 

summarised in Figure 4.1. 

 

Figure 4.1 Coherent motion detection task protocol. CM stimuli = Coherent Motion stimuli(adapted from 

Mascheretti et al.,2021). 
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Full Field Sinusoidal Grating Task 

The Field Sinusoidal Grating task is designed to differentiate BOLD signals from 

magnocellular and parvocellular visual pathways (Mascheretti et al.,2021). The task consisted 

of two different types of stimuli: Magnocellular (M) and Parvocellular (P) stimuli. The M 

stimulus consisted of a monochrome, low spatial frequency, high temporal frequency, high 

luminance contrast, and full-field sinusoidal grating featuring sinusoidal counterphase flicker. 

Additionally, it consisted of a 100% luminance contrast, black-white grating with a spatial 

frequency of 0.5 cycles per degree (cpd), and a flicker frequency of 15 Hz. On the other hand, 

The P stimulus was a high color contrast, high spatial frequency, low temporal frequency, and 

low luminance contrast full-field sinusoidal grating with sinusoidal counterphase flicker. 

More specifically, the P stimulus featured a low luminance contrast, high color contrast, and 

red-green grating with a spatial frequency of 2 cycles per degree (cpd) and a flicker frequency 

of 5 Hz. Color levels in the P stimulus were adjusted to be near-isoluminant, with the red 

luminance set to the maximum level and the green set to 39% of the maximum level. Both 

gratings were displayed at one of six orientations (0°, 30°, 60°, 90°, 120°, and 150°) and 

transitioned to the next orientation every 2.33 seconds. In addition to M and P stimuli blank 

stimuli consisting of gray screen of mean luminance were also presented. The outer edges of 

each stimulus gradually transitioned into gray to prevent sharp visual edges at the boundaries 

of the stimulus. Examples of stimuli in the full field sinusoidal grating task are represented in 

Figure 4.2.   

 

Figure 4.2 The full field sinusoidal grating´s task M and P stimuli. A. Magnocellular (M) stimuli in different 

orientations change from one to another every 2.33 seconds. B. Parvocellular (P) stimuli presented in six 

different orientations changing every 2.33 seconds  (adapted from Mascheretti et al.,2021). 
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The protocol included 28 blocks, consisting of 8 M blocks, 8 P blocks, and 12 blank blocks, 

presented in a pseudorandom order. To minimize adaptation to the stimuli, the same type of 

stimulus could not appear in subsequent blocks. A white fixation point, subtending 0.2 

degrees of visual angle, remained at the center of the screen throughout the stimulus blocks. 

The inter-stimulus waiting period between stimulus blocks was 2s. Participants were 

instructed to maintain fixation throughout the experiment. Additionally, during the M and P 

stimulus blocks, participants performed an irrelevant target detection task to encourage the 

maintenance of fixation. The target consisted of a bi-dimensional Gaussian contrast reduction 

patch, with its size linearly scaled based on the distance from the fixation point. It appeared 

randomly for 300 ms and in random positions during the second half of each stimulus block at 

50% of the time. After each stimulus block, the screen turned gray, prompting subjects to 

indicate whether the target appeared by pressing the corresponding button on the response 

pad. Participants had 4s to answer. The protocol of the full field sinusoidal grating task is 

illustrated in figure 4.3.  

 

Figure 4.3 Three stimuli were presented in pseudorandom order: 12 blocks of Blank stimuli, 8 blocks of M 

stimuli, and 8 blocks of P stimuli. After each block of stimuli, participants had 4 seconds to respond if the target, 

presented 50% of the time, appeared or not. Additionally, between blocks of stimuli, there was a 2-second inter-

stimuli waiting period (adapted from Mascheretti et al.,2021). 
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4.5 fMRI analysis 

4.5.1 Pre-processing 

When acquiring MRI and fMRI images not only brain tissue is captured but also these 

anatomical and functional images include non-brain tissues like the skull, neck, soft tissues, 

and background images. However, non-brain tissues can cause some processing difficulties 

in further analyses. Therefore, a series of steps are needed to <clean= and prepare raw fMRI 

data before conducting any further steps of research. This process is often referred to as pre-

processing (Smith, 2004).  In the case of functional MRI, these steps can be divided into two 

large groups: structural pre-processing and functional pre-processing. As the data used in the 

present study was already partially preprocessed by the authors of the original study from 

which the data was obtained (Mascheretti et al., 2021), the pre-processing procedure was 

completed and also done for one subject for demonstration purposes.  

Structural Pre-processing  

BET extraction 

Brain Extraction Tool (BET) is an automated method for removing non-brain tissue from a 

whole head image (Smith, 2002). This tool implemented in the FMRIB Software Library 

(FSL) package (Woolrich et al., 2009, Smith et al., 2004, Jenkinson et al., 2012) is often used 

as one of the first steps of pre-processing MRI images.  FSL is a software tool that is used in 

structural, functional, and diffusion MRI brain image analysis (Jenkinson et al. 2012). FSLs 

BET is used to extract brain tissue from other noisy non-brain aspects in T1 images. When 

using BET one should specify the input image, the label for the output image, and options. 

The output provided is a result of performing defined options on an input image. The 

standard pseudo-code used for BET extraction is:  

 

bet <input> <output> [options] 

 

Several options can be used based on specific needs for the images and research settings. 

Some of the most commonly used options are: 
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ï -f, fractional intensity threshold. Values range from 0 to 1 and the default value of 

this option is 0.5, smaller values give larger brain outline estimates.  

ï -g, vertical gradient in fractional intensity threshold. Values go from -1 to 1, and 

the default value is 0. Smaller values give larger brain outlines at the bottom and 

smaller ones at the top. 

ï -B, this option is considered to be advanced, but it is commonly used to reduce 

neck voxels.  

 

After this procedure is done, the user should have an output image from a raw T1 image 

containing only brain tissues. Output can be viewed and inspected in FSLeyes. The output 

image is presented below in Figure 4.4. 

 

Figure 4.4 Raw anatomical image of randomly selected participants with overlaid BET extracted image in 

orange color. 

Segmentation 

Segmentation is used to classify and identify different brain tissue types, such as gray matter, 

white matter, and cerebrospinal fluid (CSF). This procedure provides a way to eliminate 

unwanted artifacts and transform data into the standard format adequate for further analysis.  

For instance, gray matter is one of the most important tissue types for the detection of activity 

in fMRI compared to white matter and CSF, thus segmentation can be used to segregate those 

different brain tissues and perform analysis on the specific tissue of interest. One way of 

performing segmentation is by using FSL FAST (FMRIB's Automated Segmentation Tool) 

(Zhang et al., 2001). This approach is based on a hidden Markov random field model and 
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allows completely automated and reliable segmentation of 3D images of the brain into 

different tissue types (Zhang et al., 2001). Pseudo code for FSL FAST is: 

 

fast<input><output> -o fast_segm 

 

The BET-extracted image is usually used as an input image for FAST. –o is used to indicate 

the base name of output images. When using FSL FAST one can also specify the number of 

segmented types of tissues. The standard number is 3 (White matter, Gray matter, CSF), but 

in some cases, if there is inferior grey/white matter contrast this option can be reduced to 2. 

This can be done by adding the following option:  

 

-n <number_of_classes> 

 

The output file names created by FSL FAST indicate the type of matter. Pve_0 implies CSF, 

pve_1 gray matter, and pve_2 implies white matter. For example, if the file has the name 

indicated below, it designates the gray matter segment: 

 

fast_segm_pve_1.nii.gz 

 

An illustration of a segmented brain with 3 types of matter is shown below in Figure 4.5.  

 

Figure 4.5 Segmented brain tissue for one randomly selected subject. CSF is represented with light blue, gray 

matter with yellow, and white matter with dark blue color. 
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Functional pre-processing  

The BOLD signal measured by fMRI is often influenced by non-neural sources of variability 

such as system-related noise, intrinsic physiological fluctuations, and movement-related 

effects. Therefore functional preprocessing steps are needed to identify these sources and 

reduce their impact on the data (Caballero-Gaudes& Reynolds, 2017). Furthermore, 

functional preprocessing enables the better anatomical localization of signals ensuring 

accurate interpretations of neuroimaging data (Esteban et al., 2019). Specific procedures used 

in functional pre-processing will be explained in more detail in further text.  

MP-PCA 

Marčenko-PasturPrincipal Component Analysis (MP-PCA) is used for deleting the noise 

from the raw functional images.  It uses principal component analysis across different time 

points and in that way separates signal from noise, thus improving signal-to-noise ratio. 

Slice timing 

The next step is slice timing correction. To create 3D images in fMRI acquisition 2D slices 

are rapidly acquired over hundreds of milliseconds and stacked together, but each of the 

slices is not obtained simultaneously, thus they are not temporally aligned (Parker &Razlighi, 

2019). Slice timing correction is a temporal correction used to resolve the mentioned 

phenomena and problems that it can cause in further analysis. This procedure corrects the 

temporal offsets between slices by shifting the time series of each slice to temporally align all 

slices to a reference time point (Parker & Razlighi, 2019). 

Realignment 

During the scanning process, the head movements of the subject can significantly impact the 

data collected, therefore addressing the movement correction is necessary as well. Without 

movement correction the signal from a particular voxel in one position can change in the case 

of movement, for example, it can originate from outside the brain (Zafar, et al. 2015). The 

realignment allows spatial alignment of all functional images with the first functional image 

and in that way removes unwanted movement of participants in the scanner. Thus, this 

procedure aims to align all images to maintain consistency in the positioning of the brain 

across all frames and therefore ensure that the signal from a particular voxel always 

corresponds to the physical location (Zafar, et al. 2015). 
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Coregistration 

After completing all the previous steps in structural and functional pre-processing it9s 

necessary to register functional images with anatomical ones.The process of coregistration 

involves aligning these functional and structural MRI images spatially. In addition to aligning 

functional MRI (fMRI) data with structural MRI data, coregistration often involves aligning 

these images to a standardized anatomical space, such as the Montreal Neurological Institute 

(MNI) space (Mazziotta et al.,1995) One way of performing coregistration is by using FSL9s 

FLIRT (Jenkinson & Smith et al. 2001; Jenkinson et al., 2002) which is a program performing 

affine registration.  The main options in this program are input, an image to transform, and 

reference volume, the image with which the input should be aligned. Thus, the input is usually 

a functional image and the reference is a T1-weighted anatomical image. 

The examples of structural and functional images after the pre-processing are illustrated in 

Figure 4.6. 

 

Figure 4.6Example of pre-processed images.A - T1-weighted image after pre-processing; B - The fMRI image 

after pre-processing (Courtesy of Gökçe Korkmaz).  
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Quality control with SPM9s CheckReg Tool 
CheckReg is a tool implemented in the SPM that can be used for checking the coregistration 

of multiple images. It can be used to evaluate the correspondence between a structural image 

and the mean of functional images acquired with fMRI (Ashburner et al., 2012). Therefore, 

this tool can be used as a quality control after the coregistration procedure to ensure that 

images are properly aligned and in the same anatomical positions without large errors or 

mismatches (Peelle, 2019). An example of the output of the ChekReg tool for one randomly 

selected participant is shown below in Figure 4.7.  

 

Figure 4.7An example of the evaluation of the correspondence between a structural and the mean of the 

functional images for one randomly selected subject. 

Additionally, the pipeline of the described pre-processing procedure is illustrated in Figure 

4.8.  
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Figure 4.8 The pipeline of the pre-processing procedure. 
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4.5.2 Subject Level Analysis 

Analysis of fMRI data typically consists of two stages: first-level or subject level and second-

level or group level (Ashburner et al. 2014). Subject-level analysis, also known as first-level 

analysis, is a critical step involving analyzing individual subjects' brain activity by modeling 

the measured BOLD signal over time. The goal of this procedure is to determine how 

different experimental conditions influence brain activity in each participant (Poldrack et al., 

2011). 

The analysis of fMRI data employs the method grounded on General Linear Models (GLMs). 

GLMs model the measured BOLD signal from a single voxel over time (Y) as the sum of a 

number of experimental predictor variables (X) each multiplied by the weighting parameter 

(β), plus the error (ε), where the aim is to explain as much of the variance of Y as possible 

with X and thus make the error as low as possible (Monti, 2011). Mathematically GLM can 

be denoted as shown in equation 4.4.2.1: Ā = ÿÿ + ∑ 

4.4.2.1 

Statistical analysis of fMRI data using GLM involves steps such as specifying the GLM 

design matrix, estimating parameters, and generating statistical maps. The design matrix, 

which outlines the experimental design and hypothesis testing, includes rows for each scan 

and columns for each effect or explanatory variable and can be built with session-specific 

partitions.  

In subject-level analysis parameters of the model are specified and estimated for each 

participant, thus the activation is averaged across multiple scans for each subject. Therefore, 

the number of first-level models corresponds to the number of subjects. The specifications of 

the models can be performed through an SPM batch editor implemented in MATLAB (The 

MathWorks Inc., Version R2022b). The SPM batch and necessary options that have to be 

specified are shown in Figure 4.9. 
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Figure 4.9 SPM batch editor for GLM specification.  

Timing parameters specify timing properties such as units of design, interscan interval, 

microtome resolution, and microtome onset necessary for design matrix creation. In the 

present study units of design were set to seconds for both tasks due to the event-related design 

of the study. Further, the interscan interval corresponds to TR expressed in seconds and it was 

set to 2 seconds according to fMRI acquisition properties in Mascheretti et al., 2021. 

Microtime resolution and onset were kept on default values.  

After the GLM is specified it is also necessary to perform model estimation. In this process, 

the model parameters are estimated using classical or Bayesian algorithms (Ashburner et al. 

2014). Estimation can be performed through the SPM batch editor as well, and once it is 

performed one can further specify contrasts. Contrasts are used to compare the different 

conditions in an experiment. Moreover, two types of contrast can be differentiated: F contrast 

or effect of interest and T contrast.  F contrast is used to test multiple linear hypotheses, 

including main effects and interactions. However, F contrast does not specify whichparameter 

is driving the effect or the direction of the difference. On the other hand, T contrast assesses 
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the effect of one parameter or compares specific combinations of parameters (Penny et al., 

2011). In the present study, two T contrasts were created:  

ï Coherence 15 - refers to the coherent motion detection task and the condition where 

the level of coherent motion of the dots is 15% versus the baseline blank stimuli. This 

condition is specifically chosen due to its reported better discriminating accuracy 

between TR and DD subjects compared to the 6% and 30% conditions (Mascheretti et 

al. 2021).  

ï Magnocellular - represents the magnocellular condition of the full field sinusoidal 

grating task versus the baseline blank stimuli. The magnocellular condition was used 

as previous studies have reported different functioning of the magnocellular visual 

pathway in DD compared to TR, but the same was not found in the parvocellular 

pathway (Stein, 2018).   

The ending output of the first level analysis was obtained as contrast images, containing the 

information of the defined contrast, necessary for the second level or group level analysis 

which will be described in the following subsection.  
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4.5.3 Group Level Analysis 

To draw conclusions about group activation the second-level or group-level analysis has to be 

performed. This process, like the first level analysis, comprises model specification and 

estimation. This method uses contrast images from each subject as summary measures of their 

responses and then enters them as data into a "second-level" model (Ashburner et al. 2014). 

This study used the full factorial design for group-level GLM, including two factors with two 

levels. One factor represents the group with levels DD and TR, while the other factor 

represents a task with two levels the full field sinusoidal grating task and the coherent motion 

detection task.  Factorial design is represented in the table 4.4.3.1. The ending output of 

group-level GLM estimation is the group SPM.mat file that contains all necessary information 

for further analysis including the VOI extraction. Some of the files contained in the SPM.mat 

file are: 

ï SPM.xX.X - Containing information about the design matrix 

ï SPM.xX.name – Containing labels for each column of the design matrix 

ï SPM.xY.P – Containing input files 

ï SPM.xCon - Containing information on contrast definitions  

 

 CM GR 

DD DD_CM DD_GR 

TR TR_CM TR_GR 

Table 4.4.3.1. The factorial design used in group-level GLM specification. DD: developmental dyslexia group, 

TR: typical readers group, CM: coherent motion detection task, GR: full field sinusoidal grating task.  
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4.6 Conjunction Analysis 

The initial intention of this study was to compare not only DD and TR groups on one task but 

also to compare effective connectivity between the two described tasks, the Full Field 

Sinusoidal Grating task, and the Coherent Motion Detection task. To be able to make these 

comparisons it is necessary to define the same Volumes of Interest (VOI) for both tasks. One 

way to select the same VOIs in different tasks is to perform the Conjunction analysis (Price & 

Friston, 1997; LaBar et al., 1999), used in this study.  

Conjunction analysis was performed with a full factorial design, combining two tasks and two 

groups. Full factorial design refers to an experimental design with several experimental 

factors, each represented by multiple levels (Henson & Penny, 2003), where all of the main 

effects and interactions are intended to be tested (Ashburner et al. 2014). The design matrix is 

shown in Figure 4.10. below.  

 

Figure 4.10 Conjunction analysis design matrix. 9 - Coherent motion detection task contrast. 

10 - Full-field sinusoidal grating task contrast. 1 and 3 - DD group. 2 and 4 - TR group. 

This approach allowed us to identify voxels activated in each task and group, highlighting the 

common regions of activation.  
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4.7 Volumes of Interest Definition and Extraction 

In defining the volume of interest (VOI) definition, several key factors were considered. First, 

the study's aim to investigate cerebellar and attentional visual network deficits in DD was 

crucial. Second, existing literature on the involvement of specific regions in visual attention in 

DD was thoroughly reviewed. Finally, areas showing significant activation overlap between 

DD and TR groups, as well as between Coherent Motion Sensitivity and Full Field Sinusoidal 

Grating tasks were considered. 

After careful reasoning, we identified seven VOIs for our further analysis with the stated 

reasons for selection :  

ï Bilateral Primary Visual Cortex (V1) given the visual nature of used tasks; 

ï Right and left Middle Temporal Cortex (V5_R and V5_L) - Selected for their 

involvement in movement processing (Stein, 2022), magnocellular pathway function 

(Vellutino et al., 2004), and previous associations with DD (Stein, 2022). 

ï Right and left  Middle Frontal Gyrus (MFG_R and MFG_L) - Known  to be a part of 

VAN and crucial for attention reorienting, making them one of the key regions 

involved in proficient reading (Corbetta & Shulman, 2002, Freedman et al., 2020);  

ï Right and left Crus I of Cerebellum (CRUSI_R and CRUSI_L) - Chosen to test the 

cerebellar deficit theory, with Crus I specifically targeted due to its cognitive functions 

and reported role in language processing (Mariën & Borgatti, 2018).  

Additionally, when deciding on the number of VOIs, DCM limitations were considered. 

Previous research has demonstrated that, in the absence of prior hypotheses regarding inter-

regional connectivity, DCM can reliably infer effective connectivity for models involving 

fewer than eight regions of interest (Seghier & Friston, 2013).  

After determining VOIs the anatomical mask extraction was performed to obtain information 

deriving from anatomical atlases. Anatomical mask extraction refers to extracting binary 

images that outline specific brain regions of interest which serve as templates that define the 

spatial boundaries of ROIs. Anatomical information obtained from these masks further 

provides a basis for the selection of subject-specific coordinates guided by group maxima. In 

other words, group-level activation peaks are used to pinpoint the most relevant coordinates 

within each subject's brain. VOI activity can then be summarized by extracting combined 
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anatomical and group-level constraints for each subject, ensuring that both anatomical 

accuracy and functional relevance were maintained in the analysis. The present study used 

three anatomical atlases implemented in the FSL for this purpose: the Jülich histological brain 

atlas (Amunts et al., 2020) and the Harvard-Oxford atlas (Desikan et al., 2006; Frazier et al., 

2005; Goldstein et al., 2007; Makris et al.,2006), and Probabilistic cerebellar atlas 

(Diedrichsen et al., 2009). Atlases visualized in FSLeyes(McCarthy, 2024) are illustrated in 

Figures 4.11, 4.12,  and 4.13.  

 

Figure 4.11 Harvard-Oxford atlas vi sualized in the FSLeyes 

 

 

Figure 4.12 Jülich histological brain atlas visualiezed in the FSLeyes 
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Figure 4.13 Probabilistic cerebellar atlas (Diedrichsen et al., 2009). 

The next step consisted of VOI extraction based on group activation. VOI extraction implies 

extracting the representative time series from the selected brain regions, taking into account 

previously created contrast. Therefore, time series are extracted only from the selected 

conditions. In this process, it is necessary to specify the geometry, dimensions, and thresholds 

of the contrast for each corresponding VOI. This information, as well as the coordinates of 

VOI on the group level, are shown in Table 4.6.1.  

Region  Geometry  Coordinates  Threshold 

MFG_R Sphere, 15mm [45.71; 10.99; 30.99] 0.005 Uncorrected 

MFG_L Sphere, 15mm [-44.03; 4.81; 35.87] 0.005 Uncorrected 

V5_R Sphere, 15mm [44.87; -66.83; 3.492] 0.005 Uncorrected 

V5_L Sphere, 15mm [-41.17; -74.15; 4.95] 0.005 Uncorrected 

CRUSI_R Sphere, 10mm [25.67; -75.48; -19.94] 0.005 Uncorrected 

CRUSI_L Sphere, 10mm [-25.68; -72.01; -20.32] 0.005 Uncorrected 

V1_BIL Box, [50x50x50] mm3 [6.99; -78.34; 4.51] 0.005 Uncorrected 

Table 4.7.1. Geometry selection of each ROI. MFG_R - right middle frontal gyrus, MFG_L - left middle frontal 

gyrus, V5_R - right middle temporal region, V5_L - left middle temporal region, CRUSI_R - right crus I of the 

cerebellum, CRUSI_L - left crus I of the cerebellum, V1_BIL - bilateral primary visual cortex.  

The result of VOI extraction on the group level is the group-level mask images in the NIfTI 

format and the VOI.mat files containing the information about extracted masks. An example 

of an extracted time series for one VOI is shown in Figure 4.14.  
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Figure 4.14. Extracted time series from the right Crus I of the cerebellum.  

After the VOIs based on the group-level activation are extracted, the next step is the subject-

specific VOI extraction. Figure 4.15 of a randomly selected subject illustrates the extracted 

MFG_L and MFG_R using the defined pipeline.  
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Figure 4.15Extracted VOI of MFG for the randomly selected subject. The blue color represents the 

anatomically restricted region based on the Hardvard-Oxford atlas.  The red color indicates the group-level 

activation obtained from the group-level SPM.mat file. The yellow color indicates the region selected from 

subject-specific activation of the randomly selected subject. 

While performing VOI extraction based on the subject-specific activation in the Full-field 

sinusoidal grating task, we encountered some difficulties, most likely due to the passive 

nature of the task. This resulted in the <empty= voxels with no significant activation in the 

ROIs in most participants. Therefore, we decided to proceed with further analysis only on the 

coherent motion detection task. Additionally, four subjects (S11, S18, S30, S37), two in each 

group, exhibited the same difficulties, thus we excluded them from the study.   
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4.8 Dynamical Casual Modeling 

Testing models 

The present study used Dynamical Casual Modeling (DCM) on fMRI data to investigate 

patterns of effective brain connectivity in the visual attention network in DD and TR. To 

compare the DD group with the TR group, the 7 nodes of volume of interest were kept 

constant across all models. The selected nodes included: V1_BIL, V5_R, V5_L, MFG_R, 

MFG_L, CRUSI_R, CRUSI_L. The selected nodes for DCM analysis are illustrated in Figure 

4.16.  

 

Figure 4.16 VOI selected for DCM analysis. MFG_L: Left Middle Frontal Gyrus, MFG_R: Right Middle 

Frontal Gyrus, V5_L: Left Middle Temporal Cortex, V5_R: Right Middle Temporal Cortex, V1_BIL: Bilateral 

Primary Visual Cortex, CRUSI_L: Left Crus I of Cerebellum, CRUSI_R: Right Crus I of the Cerebellum. 

Specifically, this study employed Random Effects Bayesian Model Selection (RFX BMS) to 

determine the best-fitting model from a set of models for each group given the observed data. 

The same set of models was tested for both groups to ensure valid comparisons.  

In DCM studies, a prevalent approach involves defining models starting from a fully 

connected model, subsequently pruning connections, and developing reduced models based 

on current literature, existing knowledge, and hypotheses. A fully connected model refers to a 

model with an interconnected architecture among all nodes of interest, which does not reflect 

any prior knowledge or assumptions. This study employed the same strategy. However, the 

fully connected model was excluded from the final analysis due to the inherent bias in DCM 

towards such models (Stephan et al., 2007). Fully connected models, particularly those with 
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numerous regions and connections, tend to become overly complex. This complexity arises 

from the large number of parameters that need to be estimated, increasing the risk of the 

model being excessively influenced by noise and thus overfitted. Consequently, while the 

model may appear to be the best fit, its generalization capability is often limited (Stephan et 

al., 2007). 

Four reduced models were developed, each representing a different hypothesis regarding 

potential effective connectivity patterns based on the nature of the task and current 

understandings of visual attention networks. For each model, the driving input of Matrix C 

was configured to enter V1_BIL, consistent with the visual nature of the task. Furthermore, 

the anatomical contralateral connectivity between the cerebellum and cerebrum was 

considered for all models (Roostaei et al., 2014). Specified models are the following:  

Model 1 emphasizes bidirectional connections among visual areas and visual areas (V1_BIL, 

V5_L, and V5_R) and the cerebellum (CRUSI_L and CRUSI_R) with frontal regions 

(MFG_L and MFG_R) receiving inputs through V5. Specifically, it models the bidirectional 

connectivity between V1_BIL and V5_L and V5_R as well as with CRUSI_L and CRUSI_R. 

Furthermore, bidirectional connectivity of V5_R with the CRUSI_L and between V5_L and 

CRUSI_R are included in this model. Family, connections from V5_R to MFG_R and V5_L 

and MFG_L are included in Model 1.  

Model 2 highlights connections between visual areas and MFG_L and MFG_R, while the 

CRUSI_L and CRUSI_R receive inputs through V5_R and V5_L respectively. This model 

contains bidirectional connections between V1_BIL and V5_R and V5_L, as well as between 

V1_BIL and MFG_L and MFG_R. Further, MFG_L and MFG_R have bidirectional 

connections with both V5_R and V5_L. Moreover, unidirectional connections from V5_L to 

CRUSI_R and from V5_R to CRUSI_L are modeled here. Lastly, the direct bidirectional 

connections between MFG_L and MFG_R with CRUSI_R and CRUSI_L, respectively, are 

implemented in Model 2.  

Model 3 considers the right-lateralized nature of VAN, thus excluding MFG_L from the 

model. Here, V1_BIL has bidirectional connections with MFG_R, CRUSI_R and CRUSI_L, 

as well as with V5_R and V5_L. Additionally, bidirectional connections between V5_R and 

V5_L with MFG_R are modeled in the Model 3. Furthermore, a bidirectional connection 

between MFG_R and CRUSI_L is included. Connections from V5_R to CUSI_L and from 

V5_L to CRUSI_R are modeled as well.  
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Model 4 combines the connectivity of visual areas with both cerebellar areas and frontal areas 

comprising a more complex architecture compared to the rest of the defined models. It 

highlights the bidirectional connectivity between MFG_L and MFG_R as well as between 

MFG_L and CRUSI_R and between MFG_R and CRUSI_L.  

All described models are illustrated in Figure 4.17.  

 

 

Figure 4.17 Tested DCM models. MFG_R – right middle frontal gyrus; MFG_L – left middle frontal gyrus; 

V5_R – right middle temporal visual area; V5_L – left middle temporal visual area; CRUSI_R – right crus I of 

the cerebellum; CRUSI_L – left crus I of the cerebellum; V1_BIL – bilateral primary visual cortex.  

After obtaining the best-fitting model for both groups, the Bayesian Model Averaging (BMA) 

was used to further explore the nature of patterns of connectivity in selected models.  
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5 Results 

5.1. Group level Analysis Results 

GLM estimation for the group analysis with the Coherence-15 contrast revealed significant 

task-dependent activation (p < 0.001 uncorrected) in several brain regions of the visual 

attention  network in the cerebrum and cerebellum in both DD and TR groups. The results of 

this group analysis for the TR and DD groups are visualized with xjview 

(https://www.alivelearn.net/xjview) in Figure 5.1. The regions with significant activation 

included the left and right middle frontal gyrus (MFG_L and MFG_R), left and right middle 

temporal cortex (V5_L and V5_R), left and right crus I of the cerebellum (CRUSI_L and 

CRUSI_R), and bilateral primary visual cortex (V1_BIL) as shown in Figure 5.2. 



84 
 

 

Figure 5.1 Activation map of the estimated GLM with the contrast Coherence- 15 in the TR and DD group. 

The p<0.001 activation maps of overall activation of TR and DD groups on Coherence 15 condition visualized 

using xjview toolbox.  
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Figure 5.2 Activation of the relevant regions of the visual attention network with the Coherence - 15 contrast 

in TR and DD groups. Group-level activation (p<0.001) (pink color) was overlaid on the anatomical masks of 

the relevant VOIs. 

These results were further used to establish ROIs and perform VOI extraction and DCM 

analysis.  
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5.2. Conjunction Analysis Results 

An implemented fully factorial design with two experimental tasks (coherent motion detection 

and full-field sinusoidal grating) across two groups (DD and TR) to compare the activations 

showed activity in several brain regions involved in visual attention. In particular, the 

included design showed significant overlap (p>0.001 uncorrected) between task type and 

group activation in: MFG_L, MFG_R, V5_L, V5_R, CRUSI_L, CRUSI_R, and V1_BIL. 

Figure 5.3 presents illustrations of a conjunction analysis at p>0.001 uncorrected, visualized 

with xjview.  
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Figure 5.3. Activation on the group level was obtained from the conjunction analysis and used for selecting 

ROIs. 

Furthermore, to gain a better insight into the active regions revealed by the conjunction 

analysis, the results of this procedure were overlaid on the anatomical masks of the relevant 

brain regions involved in visual attention obtained from the Harvard-Oxford atlas (Desikan et 

al., 2006; Frazier et al., 2005; Goldstein et al., 2007; Makris et al.,2006). These results 

confirmed that the main regions of interest have significant activation (p < 0.001 uncorrected) 

in each condition and, therefore, are suitable for further inclusion in the study as represented 

in Figure 5.4.  
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Figure 5.4 Activation obtained from conjunction analysis (red color) overlaid over anatomical masks of the 

determined VOIs (blue color). 
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5.3. Dynamical Casual Modeling Results 

Dynamic Causal Modelling results after specification and the estimation of multiple models 

for each subject were used for the Bayesian Model Selection (RFX- BMS) in the further 

analysis. The result of the estimated time series of the DCM models was obtained for each 

participant, as the examples subject was shown in Figure 5.5. Further subject-specific 

exploration was conducted, and  the results from t he randomly selected subject's SPM DCM 

are discussed in the following text.  
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Figure 5.5 Estimated time series of the DCM model for one randomly selected participant. The upper row 

represents the predicted and observed time series with each line representing one brain region. The lower row 

represents the expectation of the connectivity parameters, where the empty parameters represent Matrix B that is 

not included in the current study. 

Figure 5.6 illustrates an example of the output signal (Hz) for both the predicted response 

(blue line) and the observed response (red dots) across each ROI over time (seconds). 
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Figure 5.6 Plot of randomly selected subject’s predicted and observed response of each VOI on Model 1. 

Additionally, Figure 5.7. displays the fixed connection probabilities (A) and strengths (B) for 

the randomly selected subject. Each color bar represents the signals from VOIs that have 

reached the target region of interest. 
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Figure 5.7 Fixed connections probabilities (A) and strength (B) for one randomly selected participant. 

MFG_R – right middle frontal gyrus; MFG_L – left middle frontal gyrus; V5_R – right middle temporal visual 

area; V5_L – left middle temporal visual area; CRUSI_R – right crus I of the cerebellum; CRUSI_L – left crus I 

of the cerebellum; V1_BIL – bilateral primary visual cortex.  

Figure 5.7. illustrated the nature of the fixed connection (Matrix A), where positive strengths 

reflect facilitation and negative parameters suggest inhibition of neural activity. For instance, 

CRUSI_R has the strongest facilitating connection coming from V1. Further, only a few 

inhibiting connections can be observed and their strength is low. The posterior probability of 

the majority of connections is higher than 0.5, while connections coming from V1 to V5_R, 

CRUSI_R, and CRUSI_L, and from V5_R coming to MFG_R and V1_ BIL are somewhat 

larger, reaching above a value of 0.9.  

Additionally, the MATLAB function <spm_dcm_fmri_check(GCM)> was utilized to perform 

diagnostics on the DCM models for a randomly selected subject, offering insights into the 

percentage of explained variance. Figure 5.8 illustrates these findings, where the upper part 

displays the predicted time series with solid lines, while the observed data is represented by 

dotted lines. The estimated parameters from matrix A are shown in the lower part of the 

figure.  
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Figure 5.8 DCM diagnostics for one randomly selected subject on one model. 

Bayesian Model Selection 

The optimal model architecture was determined from four specified models for both the DD 

and TR groups using Random Effects Bayesian Model Selection (RFX BMS). The selection 

process for the TR group is illustrated in Figure 5.9, while for the DD group, it is represented 

in Figure 5.10. The results indicate that, among the four tested models, Model 3, representing 

the right-lateralized VAN, most effectively explains the observed data in the TR group. 

Conversely, Model 1, which emphasizes bidirectional connections between visual and 

cerebellar areas, best accounts for the observed data in the DD group. Moreover, a greater 

heterogeneity among participants in the DD group can be observed, as evidenced by the 

posterior probabilities. The winning model in the DD group does not dominate as clearly as in 

the TR group, and there is significant evidence supporting other models. 
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Figure 5.9 RFX BMS results for the TR group. RFX-BMS results identified model 3 as the winning model in 

the TR group with the probability of >90%. MFG_R – right middle frontal gyrus; MFG_L – left middle frontal 

gyrus; V5_R – right middle temporal visual area; V5_L – left middle temporal visual area; CRUSI_R – right 

crus I of the cerebellum; CRUSI_L – left crus I of the cerebellum; V1_BIL – bilateral primary visual cortex.  

 

Figure 5.10 RFX BMS results for DD group. RFX-BMS results identified model 1 as the winning model in 

the DD group with the probability of >50%. MFG_R – right middle frontal gyrus; MFG_L – left middle frontal 

gyrus; V5_R – right middle temporal visual area; V5_L – left middle temporal visual area; CRUSI_R – right 

crus I of the cerebellum; CRUSI_L – left crus I of the cerebellum; V1_BIL – bilateral primary visual cortex. 
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Bayesian Model Averaging 

For further inspection of the nature of the optimal models, we used BMA to look into the 

strength of the connection between regions and possible differences between groups. BMA 

results for Model 3 (the BMS winning model in the TR group) in each group are shown in 

Figure 5.11, whilethe results for Model 1 (the BMS winning model in the DD group), are 

represented in Figure 5.12.  

 

Figure 5.11BMA results of Model 3 (winning model for the TR group) for both TR and DD groups. Changes 

in the strength of connections between groups are labelled with a black frame, connections that are stronger in 

the TR group are marked in the TR graph (left), while the connections that are stronger in the DD group are 

indicated in the DD graph (right). 

Results of the BMA of Model 3 in Figure 5.3.8. show changes in the strength of the 

connection between several regions across groups. Connections from V1_BIL have weaker 

strength in the DD group compared to the TR group. On the other hand, the majority of the 

other connections are stronger in the DD group. More specifically observable differences can 

be seen in connections: 

ï From V5_Rto MFG_R, from V5_R to CRUSI_L, from V5_R to V1_BIL; 

ï From V5_L to MFG_R, from V5_L to CRUSI_R, from V5_L to V1_BIL; 

ï From CRUSI_R to V5_L, from CRUSI_R to V1_BIL, from CRUSI_L to V5_R, from 

CRUSI_L to V1_BIL. 
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Figure 5.12. BMA results of Model 1 (winning model for the DD group) for both TR and DD groups. Changes 

in the strength of connections between groups are labelled with a black frame, connections that are stronger in 

the TR group are marked in the TR graph (left), while the connections that are stronger in the DD group are 

indicated in the DD graph (right). 

Results of the BMA of Model 1 in Figure 5.3.9. show changes in the strength of the 

connection between several regions across groups. Similarly, with Model 3, connections from 

V1_BIL have weaker strength in the DD group compared to the TR group in Model 1. Other 

connections show higher strength in the DD group. More specifically observable differences 

can be seen in connections: 

ï From V5_R to CRUSI_L and from V5_R to V1_BIL 

ï From V5_L to CMFG_L, from V5_L to CRUSI_R, and from V5_L to V1_BIL 

ï From CRUSI_R to V5_L, and from CRUSI_R to V1_BIL 

ï From CRUSI_L to V5_R, and to V1_BIL 
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6 Discussion 

The present study is the first to conduct Dynamical Causal Modeling (DCM) on fMRI data 

with visual attention task to explore differences in effective brain connectivity within the 

cortico-cerebellar visual attention network between typical readers and children with 

developmental dyslexia (DD). DD is a complex neurodevelopmental disorder with a broad 

range of symptoms (Smirni et al., 2020). Previous studies have established impairments in 

both visual and attention networks (Stein, 2003; Freedman et al., 2020), as well as in the 

cerebellum (Nicolson et al., 2001) shedding new light on the underlying processes of DD. 

However, the causal roles of the cerebellum in the DD have not yet been firmly established 

(Ashburn et al., 2020), and therefore, studying causal connections between these networks can 

have great importance for a better understanding of which mechanisms drive the symptoms of 

this disorder. To investigate these connections, previously published study by Mascheretti et 

al.,2021 was used with the participants performed a coherent motion sensitivity detection 

task, which assesses motion sensitivity (Cornelissen et al., 1998), a skill often impaired in 

individuals with DD (Stein, 2022). Specifically, this study defined a cortico-cerebellar visual 

attention network comprising seven nodes of interest: bilateral primary visual cortex 

(V1_BIL), left and right middle temporal areas (V5_L and V5_R), left and right middle 

frontal gyrus (MFG_L and MFG_R), and left and right crus I of the cerebellum (CRUSI_L 

and CRUSI_R). We aimed to reveal potential differences in causal connectivity patterns 

between those regions in the DD and TR groups. Thus, four models, each representing a 

specific hypothesis and architecture of effective connectivity were created based on current 

knowledge and assumptions of functioning in the visual attention networks, as well as the 

nature of connectivity between the cerebellum and cerebrum.  

The results of the current study revealed that distinct models with different architectures best 

explain the data for the DD and TR groups. In the TR group, Model 3, representing the right-

lateralized ventral attention network (VAN) was selected as the most probable among the four 

defined models. This finding aligns with existing literature that emphasizes the importance of 

right-hemispheric regions in visual attention processes (Corbetta & Shulman, 2002). The 

dominance of this model suggests that typical readers might rely more heavily on a right-

lateralized network for tasks involving visual attention. In contrast, Model 1, featuring 

bidirectional connections between visual and cerebellar areas, was found to be the most 

explanatory in the DD group. This model suggests that children with DD have a different 
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neural strategy in visual and attentional processing. Our results are consistent with previous 

functional connectivity studies which identified significant differences in brain region 

activation and connectivity patterns between children with DD and TR (Fin et al., 2014; 

Mascheretti et al., 2021; Schurz et al., 2015). However, unlike prior studies that focused on 

functional connectivity without directional specificity, this study implicates the causal 

relationships between regions providing a deeper understanding of impairments in the 

connectivity in DD.  

Moreover, the involvement of both the left and right middle frontal gyrus (MFG_L and 

MFG_R) in Model 1 for children with DD might suggest that those individuals utilize both 

hemispheres to compensate for deficits in visual and attentional processing. The middle 

frontal gyrus (MFG) plays a crucial role in higher cognitive functions, including working 

memory, attention, and executive control (Japee et al., 2015). This bilateral involvement could 

indicate that the DD group requires additional neural resources to achieve similar levels of 

performance as the typical readers, a phenomenon supported by previous research showing 

that individuals with DD often engage compensatory neural mechanisms (Shaywitz & 

Shaywitz, 2008). 

Additionally, Model 3 captures direct bidirectional connections between V1 and MFG_R, 

despite the absence of established anatomical connections between these regions. This finding 

underscores that effective connectivity does not necessarily reflect direct anatomical 

pathways. In contrast, the DD group9s winning model, Model 1, lacks these direct causal 

connections, suggesting impaired or altered functional integration. This absence might reflect 

that children with DD may rely on more complex and distributed networks for processing 

visual information. Instead of a direct pathway, these children might engage additional 

regions and pathways to compensate for their visual processing deficits. This complexity can 

be necessary due to the inefficiencies or deficits in their primary visual processing areas, 

requiring additional neural resources to support attention functions as supported by the 

literature (Everatt, et al., 1999; Bacon et al.,2010; Heiervang, et al., 2003).  

Further, the direct connection between the cerebellum and MFG_R in Model 3 reflects the 

cerebellum9s role in cognitive functions, such as attention and language (Schmahmann& 

Caplan, 2006), supporting the findings that the cerebellum is involved in the cognitive 

processes contributing to efficient visual attention and task performance (Brissenden & 

Somers, 2019). On the other hand, the lack of those connections in the winning model for the 
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DD group implies different involvement and impairment of the cerebellum in DD supporting 

the cerebellar deficit theory (Nicolson and Fawcett 1990).  

The important point to be mentioned is the lower posterior evidence of the winning model in 

the DD group and disperse results among all four models. The greater heterogeneity observed 

in the DD group's model selection indicates a less consistent pattern of effective connectivity 

compared to the TR group. This variability could point to individual differences in how 

children with DD process visual information (Ziegler et al., 2008). The lack of a dominant 

model suggests that a single neural pathway or strategy might not characterize developmental 

dyslexia. Instead, it highlights the possibility of multiple underlying neural mechanisms 

contributing to the disorder in line with the previous studies proposing the multifactorial 

etiology of DD (Pennington, 2006).    

Additionally, Bayesian Model Averaging (BMA) results revealed weaker excitatory 

connections originating from V1 in the DD group compared to the TR group, even within the 

winning model for DD. This finding reveals an impaired visual pathway, potentially 

supporting the magnocellular theory of DD. The magnocellular pathway, which projects to 

V1, is crucial for visual processing and thus can affect the functioning of V1. Therefore, 

weaker connections coming from V1 align with previous research that has established the 

impaired functions of magnocellular pathways in individuals with DD (Stein, 2003; Stein, 

2018). Since brain's dynamic connectivity is influenced by transcriptional heterogeneity, 

suggesting that regional variations in gene expression contribute to the distinct dynamic 

behaviors of different brain areas (Deco et al., 2021a). Thus the possible differential gene 

expression and the transcriptional heterogeneity associated with DD could underline the 

observed weaker excitatory connections from V1, as regional gene expression profiles might 

affect the development and function of the magnocellular pathways. Furthermore, other 

connections appear to be stronger in the DD group, indicating compensatory mechanisms that 

may be employed to overcome the deficits in the connections originating from V1. The 

establishment of directional relationships, as emphasized by Deco et al. (2021b), underscores 

the causal role of impaired excitatory connections in disrupting the hierarchical organization 

of the brain's global workspace. Effective connectivity highlights how changes in one region 

can causally influence another, revealing adaptive mechanisms that might not be apparent in 

structural or functional connectivity. In DD, this suggests that while structural and functional 

connectivity is altered, the brain dynamically reorganizes its effective connectivity to 
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compensate for these deficits, supporting the idea of a flexible neural network adapting to 

impairments in specific pathways. 

Advantages of the study 

The current study has two main advantages: 

(a) Employing DCM on fMRI in DD; 

(b) Inclusion of cerebellum in the analysis.  

(a) Employing DCM on fMRI in DD. Even though DD is well researched and there is a 

growing body of functional connectivity studies in this field, current DD literature comprises 

only a few studies employing effective connectivity and DCM. The available literature on DD 

that employs DCM is summarized in Table 6.1. Therefore, the present study is a step forward 

to a more comprehensive understanding of the connectivity process in DD. Furthermore, the 

present study provided an in-depth exploration of the specific nature of connections by 

employing BMA, allowing a comparison of the strengths of connectivity between TR and DD 

groups in the selected winning models.  
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Study Task Subjects Nodes 

Cao et al., 2008 
Rhyming task 

 

12 DD (2 females), 12 
TR (4 females) 

Bilateral medial frontal 
gyrus 

Left fusiform gyrus, 
inferior frontal gyrus, 
and inferior parietal 
lobule 

Morken et al.,2017 Picture recognition 

Literacy tasks

logographic processing, 

alphabetic processing, 
orthographic processing, 

and sentence processing  

Longitudinal study 

Age 6: 6 DD (5 
females), 12  TR (5 

females) 

Age 8: 10 DD (5 
females), 20 TR(8 

females) 

Age 12: 10 DD (6 
females), 17 TR (8 

females) 

Inferior frontal gyrus, 
precentral gyrus, 
superior temporal gyrus, 
inferior parietal lobule, 
and occipito-temporal 
cortex 

Di Pietro et al., 2023 Phonological lexical 
decision task 

83 TR (40 females), 49 
DD (23 females) 

Inferior frontal gyrus, 
precentral gyrus, inferior 
parietal lobule, visual 
word form area, primary 
visual cortex 

Turker et al., 2023 Reading task 28 TR (13 females), 26 
DD (17 females)  

left inferior frontal gyrus 
left dorsal temporo-
parietal cortex, left and 
right ventral occipito-
temporal cortex, left 
supramarginal gyrus,  
bilateral lingual gyri, 
right cerebellum 

Table 6.1 DD DCM Literature. 

(b) Inclusion of cerebellum in the analysis. An important advantage of the present study is the 

inclusion of the cerebellum (specifically the Crus I region) in the DCM analysis. As shown in 

Table 6.1, previous research has not incorporated this specific brain region nor utilized visual 

attention tasks in the context of DD. Thus, our approach provides valuable new insights. 

Particularly the incorporation of Crus I, allowed us to directly investigate the cerebellar deficit 
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theory of DD, and examine how cerebellar dysfunction impacts the broader neural network 

involved in reading and visual attention. 

Potential Limitations and Considerations  

The first aim of the study was to include two visual attention tasks: The full-field sinusoidal 

grating task and the coherent motion sensitivity detection task. However, due to the passive 

nature of the full-field sinusoidal grating task and the young age of the participants, 

maintaining their full engagement and attention to the task proved to be challenging. 

Consequently, participants were not consistently focused on the task, leading to lower neural 

activations. This further resulted in challenges in VOI extraction and therefore challenges in 

implementation of the DCM analysis, thus the task was excluded from the study. Including 

both tasks would have allowed for a more comprehensive examination of the visual attention 

network. The full-field sinusoidal grating task, and more specifically the magnocellular 

condition of this task could have provided more direct insights into the function of the 

magnocellular visual pathway. Moreover, the inclusion of both tasks could have highlighted 

the distinct and overlapping neural circuits involved in processing different types of visual 

stimuli, and therefore exclusion of the full-field sinusoidal grating task represents one of the 

limitations of the current study.  

Further, although DCM is a promising methodology for exploiting causal relations of brain 

activations, its limitations must be considered. Firstly, as Seghier & Friston (2013) suggested 

DCM can reliably infer effective connectivity for models involving fewer than eight regions 

of interest due to the limitation of computational demands. Therefore, DCM may struggle to 

reliably infer effective connectivity in networks comprising more than a few regions of 

interest, limiting its application in exploring large-scale brain networks where interactions 

among numerous regions are crucial (Lohmann et al., 2020). Current study included seven 

regions of interest and further study should consider including large-scale network models 

that infer the effective (directed) connectivity among neuronal populations from 

neuroimaging data such as regression DCM (rDCM) (Frässle et al., 2017). Further, even 

though BMS accounts for the model complexity when computing the probabilities of the 

given models, the common bias towards the fully connected models (Stephan et al., 2007) 

should be kept in mind. For this reason, the current study excluded the fully connected model 

from analysis, preventing the selection of the model with the seemingly best fit but with 

limited generalization properties.  Moreover, Lohmann and Couleges (2012) critique the 
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interpretability of DCM results, emphasizing the challenge of translating complex 

neuroimaging data into meaningful insights about neural interactions. They highlight that 

DCM assumptions may not always align with the true complexity of brain function, raising 

doubts about the validity of inferred connectivity patterns. Additionally, the limitations of 

model selection should be mentioned. Since DCM is a hypothesis-based approach, the model 

space is created by specifying several plausible models (Stephan et al., 2010), thus limitations 

in interpreting the model structure arise from how the model space is defined. Given the 

complexity of the pathology of DD, as well as the functioning of visual attention networks in 

healthy populations,  the predefined model space makes it unlikely that the absolute optimal 

model for explaining the data will be found.  Therefore, when referring to a <best=, <winning= 

or <optimal= model in DCM, one has to be aware of the possibility that models outside the 

considered model space could better explain the given data. In conclusion, interactions among 

brain regions are still not fully understood (Lohmann et al.,2012), therefore there is still no 

method that can provide an entirely satisfactory approach in studying effective connectivity. 

However, despite its described limitations, DCM is a valuable tool that offers a robust 

framework for modeling and inferring the directional influences between brain regions, 

providing insights for advancing our understanding of neural dynamics in both healthy 

populations and pathology.   

Future Studies  

The present study provided valuable new insights into the neural patterns of DD; however, 

more studies are needed to achieve a full understanding of this neurodevelopmental disorder. 

Future studies could correlate clinical assessments of reading ability, attentional capacity, and 

other cognitive functions with the effective connectivity patterns identified through DCM, to 

identify more clear neural biomarkers of DD. This could further allow the development of 

new and more effective interventions for DD.  
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Conclusions 
The present research was the first one to explore effective brain connectivity by using visual 

attentive task with fMRI protocol, including the regions of visual attention networks such as 

middle frontal gyrus and cerebellum in developmental dyslexia. The study provided insights 

into the impaired patterns of causal connectivity of this neurodevelopmental disorder, 

deepening the knowledge of previous functional connectivity studies. By employing 

Dynamical Causal Modeling on fMRI data, we were able to identify and compare the distinct 

neural strategies and connectivity patterns between children with developmental dyslexia and 

typical readers.  

The study's results highlighted differences in neural strategies and connectivity patterns 

between the two groups. We revealed aberrant involvement of the cerebellum, as well as the 

compensatory involvement of the left middle frontal gyrus in developmental dyslexia 

compared to the control group, aligning with attention deficit, cerebellar deficit, and 

magnocellular theories of developmental dyslexia.  

By advancing our understanding of the causal connectivity patterns within the cortico-

cerebellar visual attention network, this research offers a deeper comprehension of the 

underlying mechanisms of developmental dyslexia and provides a base for further research 

and the potential development of new interventions.  
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Appendix 
 

 Typical Readers   Developmental Dyslexia 

 
Min Max Mean  Skewness Kurtosis Min Max Mean Skewness Kurtosis 

IQ total 80 159 128.25 -0.95 1.37 80 131 104.05 0.11 -0.99 

TR, accuracy -0.13 1.42 0.62 0.06 0.85 -12.01 5.19 -3.98 -0.4 0.73 

TR, speed -1.00 1.18. 0.18 0.05 -0-63 -4.21 -0.09 -2.62 0.60 0.14 

SWR, 

accuracy 
-0.67 1.00 0.32 -0.13 -1.16 -10.00 0.33 -3.19 -0.98 0.68 

SWR, speed -1.11 0.83 0.01 -0.28 -0.88 -10.12 -0.14 -3.79 -1.48 2.49 

SPWR, 

accuracy 
-0.67 1.33 0.44 -0.24 0.12 -8.50 0.33 -2.54 -1.48 3.63 

SPWR, speed -1.03 1.15 0.20 -0.25 -0.89 -9.42 -0.67 -3.40 -1.38 1.08 

SLFS -1.35 1.35 0.16 -0.76 0.14 -2.30 0.65 -1-77 0.57 0.72 

SLBS -1.35 1.60 -0.06 0.67 -0.68 -2.2 1.35 -0.72 1.00 2.26 

SDFS -2.00 1.00 0.57 0.07 -0.27 -2.20 0.00 -1.38 0.49 0.22 

SDBS -1.40 2.00 0.57 0.98 -0.06 -1.35 0.65 -0.57 0.62 0.97 

SNWR -2.79 3.00 1.18 -1.40 1.85 -7.00 3.53 -1.63 -0.13 -0.53 

Neuropsychological assessment scores for both typical readers and developmental dyslexia groups. TR: Text 
reading; SWR: single words reading; SPWR: single pseudo-words reading; SLFS: single letters forward span; 
SLBS: single letters backward span; SDFS: single digits forward span; SDBS: single digits backward span; 
SNWR: single non-word repetition.  
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