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ABSTRACT
Developmental dyslexia is a neurodevelopmental disorder characterized by difficulties in

accurate and fluent word recognition despite normal intelligence and sensory abilities. This

thesis explores the brain effective connectivity dynamics by also incorporating the structural

information in developmental dyslexia using dynamic causal modeling (DCM) during a

visuo-attentive task.

Two groups of participants, typical readers (TR) and those with developmental dyslexia

(DD), were assessed using functional magnetic resonance imaging (fMRI) to understand the

neural mechanisms underlying altered connectivity patterns identified for the developmental

dyslexia. The study involves 40 participants (20 TR, 20 DD) who underwent

neuropsychological assessments. MRI data were collected using a 3T scanner, and

participants performed Full-Field Sinusoidal Gratings and Coherent Motion Sensitivity tasks

to assess visual and attentional processing. The fMRI data were analyzed and conjunction

analysis was performed to identify common activation patterns between the tasks. DCM

analysis implemented to model the effective connectivity between brain regions, followed by

Bayesian model averaging (BMA) to determine the differences in effective connectivity

dynamics between two groups in a Fully Connected model and structurally informed model

called Cross Brain Model.

The results indicate significant differences in the neuronal effective connectivity patterns

between the TR and DD groups. These insights contribute to a deeper understanding of the

neurobiological basis of developmental dyslexia and highlight the need for further research to

integrate these dimensions comprehensively.

Key words: Developmental Dyslexia, Dynamic Causal Modeling, Effective Connectivity,

Bayesian Model Averaging, Functional MRI
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1. Developmental Dyslexia

1.1 Definition and history of Developmental Dyslexia
Defining developmental dyslexia can be challenging. Current best definition posits that

developmental dyslexia is a neurodevelopmental disorder characterized by slow and

inaccurate word recognition (Peterson & Pennington, 2012). It is represented by the

discrepancy between inability to acquire visual reading skills, yet possessing intact oral and

nonverbal abilities, as well as a genetic background (Stein, 2018). One of the ultimate goals

of reading is comprehension, which can be attributed to decoding ability and oral

comprehension, with those suffering with developmental dyslexia having difficulties with

the former but not the latter (Peterson & Pennington, 2015). The essence of reading is

translating letters into sounds they represent (phonemes), which are not consistent and

standard acoustic signals. Rather, they depend on the sounds that come before or after it.

Firstly, children need to learn that written words consist of separate letters, so that they can

translate this into spoken words consisting of phonemes, and unlike speaking this doesn9t

come automatically, and therefore has to be taught (Stein, 2023). This focus on phonology led

to developmental dyslexia being solely associated with an inability to grasp the phonological

principle, resulting in the dominance of the 'phonological theory' of developmental dyslexia

which posits that developmental dyslexia stems from difficulties in phonological processing,

encompassing the ability to recognize and manipulate the sounds of spoken language (Stein,

2023). However, developmental dyslexia isn9t the only reason for difficulties with the

phonological principle. For instance, teenagers who leave school without proficient reading

skills, having comparable skills as an average 11-year-old, are not necessarily dyslexic.

Instead, they face a multitude of challenges such as low general ability, inadequate teaching,

lack of familial support, truancy, or various socio-economic factors. Moreover, criteria for

diagnosing developmental dyslexia, which relied on a gap between reading and oral abilities,

have been questioned due to doubts about the reliability of assessing oral comprehension and

non-verbal reading skills (Stein, 2023).

Historically, written language is a relatively recent cultural invention, which therefore

escaped being subjected to evolutionary pressure (Eden et al., 2016). Brain regions involved

in reading subserve other functions such as object recognition, but over the protracted period
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of time with formal schooling, they are utilized for reading acquisition which can be difficult

for some children (Eden et al., 2016). In particular, Adolf Kussmaul worked with stroke

patients who selectively lost their ability to read, while being able to maintain their verbal and

non-verbal reasoning skills. Therefore in 1878 he coined the term <word blindness= (Stein,

2018). The term <dyslexia= itself came only a few years later in 1884, derived from Greek

8dys9 and 8lexis9 meaning disordered words. The one who coined the term was Rudolph

Berlin who worked with stroke patients who lost their ability to spell and read, while

maintaining normal speech and oral comprehension. Today we would define this as <acquired

dyslexia= (Stein, 2023). Pringle Morgan later described a famous case of 8Percy9, a boy who

was unable to learn to read, even though he had very high verbal and non-verbal intelligence.

At the time Morgan named this terminology as <congenital word blindness=, today it can be

defined as <developmental dyslexia= (Stein, 2018). Due to Morgan9s interpretation of the

disorder being a hereditary defect affecting visual processing of words, while leaving verbal

and non-verbal reasoning skills relatively intact, this view has remained until the mid-20th

century (Stein, 2018).

1.2 Epidemiology of Developmental Dyslexia
Today dyslexia, encompassing both developmental dyslexia and acquired dyslexia, is the

most prevalent learning disability affecting 5-12% of English-speakers, with slightly lower

rates for other writing systems, due to mapping of English orthography not being consistent

between sound and print (Eden et al., 2016). Dyslexia research has historically for this reason

been highly Anglocentric, which posits English-related points (Peterson & Pennington,

2012). Recent cross-cultural research has shown that those struggling with reading of

languages with more consistent mapping compared to English, have less severe reading

problems. Furthermore, issues that persist over languages which are more useful for the

purpose of comparison are reading fluency, speed of reading connected text and spelling

(Peterson & Pennington, 2012). Incidence of developmental dyslexia is 2-3 times higher in

males than in females and it is considered highly heritable with an estimated 30-50% chance

of passing from parent to child (Eden et al., 2016). Specific learning disorders that primarily

affect reading ability, can often co-occur with other disorders or conditions. Some of the

disorders that are commonly comorbid with developmental dyslexia include ADHD,

Language Impairment (LI) and Speech Sound Disorder (SSD) (Peterson & Pennington,

2012). Clinical features of developmental dyslexia depend on the severity of deficits and the
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presence of comorbidities (Demonet et al., 2004). Also, comorbidity of reading and math

difficulties was found to be approximately 25%, explaining the struggles of children with

developmental dyslexia more broadly in school (Peterson & Pennington, 2012).

1.3 Theories of Developmental Dyslexia
Lack of understanding of developmental dyslexia led to numerous new theories emerging to

explain its underlying causes. A valuable theory should not only consolidate existing

knowledge about the phenomenon but also propose potential causes. Following is an

elaboration on some of the most influential theories of developmental dyslexia: the

Phonological Theory, the Magnocellular Theory, the Cerebellar Deficit Theory, the Dyslexia

Automatization Deficit Hypothesis, the Visual Attention Span Deficit Theory.

Starting with one of the most widely accepted theories explaining developmental dyslexia

"Phonological Theory" which explains developmental dyslexia as it is primarily

characterized by difficulties in phonological processing, which involves the ability to

recognize and manipulate the sounds of spoken language. This theory particularly posits that

those with developmental dyslexia fail to read because they are unable to learn how to

separate the sounds in a word to match with its visual representation. This has been named

<phonemic awareness= and can be assessed utilizing pseudo-words. <Phonological

awareness= early on can be acquired by practicing rhyme, alliteration, and word games.

Linguistic and reading competences are strongly predicted by successful emergence of

phonological awareness (Stein, 2018). Primary concern with this theory is that it is hard to

distinguish developmental dyslexia from other causes of reading failure just based on

phonology. Whether or not there is a discrepancy between oral and reading abilities,

phonological problems are the same (Stein, 2019).

Another theory is the <Magnocellular Theory'', which is based on the importance of the

visual magnocellular system for timing visual events in reading (Stein,2001). Magnocellular

neurons got their name from their size (magnus=large). The larger the neuron, the faster all

the processes involved in the transmission of the signal. Due to their size they aren9t sensitive

to fine details but are much faster in responding. They aren9t involved in color vision, but are

involved in timing of light inputs, and therefore are sensitive to movement. Magnocells

project their axons to the magnocellular layer of the lateral geniculate nucleus (LGN) in the

thalamus, and then further to the primary visual cortex (V1). Besides the magnocells, we can
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distinguish parvocells which project to the parvocellular layer of LGN and further to the

striate cortex (Stein, 2019). As previously mentioned, these two cell types have different roles

in processing visual stimuli. Magnocells are mainly responsible for processing of low spatial

frequency, and high temporal frequency, but not color. On the other hand, the parvocells are

responsible for high spatial frequency, and low temporal frequency and it also conveys color

information. So it can be said that the magnocells are mainly involved in motion, brightness,

and depth processing, and parvocells are involved in fine detail and color processing

(Atkinson, 1992). In addition, sensitivity to visual motion seems to predict how well

orthographic skills will develop in regard to reading. Those with developmental dyslexia are

slower at recognizing individual letters and at sequencing them correctly, with

magnocellular-dorsal attention stream being responsible for both of these functions (Stein,

2001). The magnocellular-dorsal attention stream is dominated by magnocells and

specialized for the deployment of visual attention and visuomotor control. Moreover, the

visual motion area V5/MT is mainly supplied by the magnocellular system and is active

during visual attention and visually guided movements in normal population, and much

reduced in developmental dyslexia (Stein, 2019). The cerebellum, which is affected in

developmental dyslexia, is the head ganglion of the magnocellular system which plays a role

in binocular fixation and inner speech for sounding out words (Stein, 2001). In dyslexia, the

accuracy of their eye fixation seems also to be compromised, as the magnocellular system

would usually detect any unwanted eye movements which would cause the text to appear to

move around. Even when silent reading, which doesn9t require sounding out the words, the

shape of the letters still needs to be associated with a particular sound, and the visual

attention must be properly cued. The visual/auditory cross modal cueing of attention is

affected in developmental dyslexia impacting their ability to perform even silent reading.

However, the primary concern with this theory is the possibility that magnocells have

reduced sensitivity as a result of failing to learn to read, thereby getting less visual skills

practice, and not vice versa (Stein, 2019).

The <Cerebellar Deficit Theory= of developmental dyslexia, originally proposed by

Nicolson, Fawcett and Dean, posits that cerebellar dysfunction, particularly impaired

procedural learning, can provide an explanation for both the reading difficulties and the

non-literacy symptoms associated with developmental dyslexia. These non-literacy

symptoms encompass issues like poor handwriting, laborious learning, and challenges with

visual sequencing (Stoodley & Stein, 2013). The foundation of the <Cerebellar Deficit
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Theory= is cerebellum which exhibits activity not only during speech but also during silent

reading, passive language processing, and visually guided movements such as the eye

movements necessary for reading text. Alternatively, certain cerebellar functions, including

the direction of attention, error detection, timing and sequencing, as well as implicit and

associative learning, may play a role in reading (Stoodley, 2014). As further proof of

cerebellar involvement in reading, traumatic brain injury studies have found that cerebellar

damage results in reading difficulties in both children and adults (Scott et al., 2001). The

cerebellum enables automatic behaviors by constantly adapting to the environment by

interacting with the prefrontal cortex in order to be able to anticipate outcomes and adapt

accordingly to be able to control motor behavior. The interaction between cerebellum and

executive function might explain why developmental dyslexia is less prevalent in countries

who use language that has more incongruence between spelling and pronunciation of words

(Smith-Spark & Gordon, 2022). Biologically speaking, cerebellar deficit could be either an

alternative or happening in parallel to the magnocellular system abnormality (Nicolson et al.,

2001).

Another theory proposed by Nicolson and Fawcett (1990) for the cerebellar involvement in

developmental dyslexia is the <Dyslexia Automatization Deficit hypothesis= which posits that

dyslexia-related problems stem from a lack of automaticity and the necessity to allocate

attentional resources consciously (Stoodley & Stein, 2013). Especially, adults with

developmental dyslexia showed reduced activation of the right cerebellar cortex during the

learning of novel motor sequences and the performance of pre-learned sequences, as well as

increased frontal activation in developmental dyslexia patients, which was hypothesized to

compensate for the reduced activation of the cerebellum (Smith-Spark & Gordon, 2022). 

Cerebellar impairment is also likely to cause, either directly or indirectly, the <phonological

core deficit= (Nicolson et al., 2001), which refers to a specific impairment in the processing

or awareness of the sounds of language, particularly in relation to reading and language

learning (Stanovich, 1988).

Lastly, the <Visual Attention Span (VAS) Deficit hypothesis= stands out by stating that some

dyslexic people suffer from poor visual attention capacity, affecting the number of visual

elements they can process simultaneously in a multi-element array, resulting in reduced VAS.

This hypothesis initially stems from the theoretical framework of the multi-trace memory

model. According to this model, VAS deficit results from a reduced distribution of visual

attention across the input letter string, therefore affecting letter recognition with no impact on
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phonological processing. Moreover, VAS would depend on the activation of the bilateral

superior parietal lobules (SPLs), a brain region belonging to the dorsal attentional network

but not to the language network (Valdois, 2022).
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1.4 Attentional networks and their involvement in Developmental
Dyslexia
Research indicates that visual attention deficits significantly contribute to the reading

challenges experienced by individuals with dyslexia. Specifically, children with dyslexia

exhibit deficiencies in various visual abilities, including visual perception, visual temporal

processing, and the swift deployment of attention (Peters et al., 2019). Moreover, during the

pre-reading phase, the proficiency of visual attention skills serves as a predictive factor for

subsequent reading development (Taran et al., 2022). In their study, Morken et al. (2014)

found that children with dyslexia exhibited heightened cortical activation, especially in

temporal and frontal areas, suggesting that dyslexic children may use more neural resources

compared to their peers, highlighting potential compensatory mechanisms at play.

1.4.1 Attentional networks
Attention is one of the most studied areas in psychology. By definition, attention is a process

of selecting an active idea or an environmental feature to focus on, allowing us to prioritize

between different options. Moreover, it can be focused on different areas of the visual field

and can easily switch between points (i.e. when looking at a book, one can pay attention to

the words written allowing them to catch smaller mistakes, or to the page as a whole) (Raz,

2004). Historically, there has been a general assumption that visual attention is a function of

right hemisphere only, however multiple neuroimaging studies have to this day shown

bilateral fronto-parietal activation, with dominance in the right hemisphere in majority, but

not all, of the population (de Shotten et al., 2011).

Visual attention encompasses orienting, vigilance and executive attention. Firstly, when

talking about orienting of visual attention, we can distinguish between overt, that is directing

the eye movement towards the area of interest, and covert, which is assigning priority to an

area without consequent eye movement and orienting (Fernandez-Duque & Posner, 2001).

Both of these orienting types have been shown to activate brain areas such as precentral gyrus

and areas in the parietal lobe including superior parietal, temporoparietal, lateral inferior

parietal areas, frontal eye fields, as well as subcortical structures such as superior culliculus

and thalamus (Fernandez-Duque & Posner, 2001). It is important to note that there is a

prevalent theory, supramodal orienting system theory, which states that selecting of the

relevant information can be also based on non-spatial features such as color or time

(Fernandez-Duque & Posner, 2001). Orienting system is comprised of the dorsal attention
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network (DAN) and ventral attention networks (VANs), supporting the ability to prioritize

sensory input and to shift attention, elucidating both bottom-up reorienting processes and

top-down visuospatial functions, however  flexible attentional control can only be

implemented by dynamic interactions of both systems. This interaction is overseen by frontal

areas such as the inferior and middle frontal gyrus (Vossel et al., 2013). Secondly, vigilance,

alternatively named alertness or sustained attention, is an ability to achieve and sustain an

alert state in preparation for stimulus. We differentiate between phasic vigilance (task

specific), and intrinsic vigilance (a general cognitive control of arousal), a foundational form

of attention on which other attentional functions rest. Phasic vigilance allows us, for a short

period of time after an alerting stimulus, to increase the processing efficiency of features in

the environment (Goldfarb & Shaul, 2013). Although the relationship between phasic and

intrinsic vigilance (arousal) is poorly understood, there are findings that vigilance in

unwarned situations (intrinsic vigilance) heavily relies on a right hemisphere cortical and

subcortical network with the anterior cingulate cortex as a central structure attention (Raz &

Buhle, 2006). Generally, when a person is in an alert state, regardless of the actual presence

of the stimulus, there is an increase in brain activation, especially in the right fronto-parietal

areas (Fernandez-Duque & Posner, 2001), or alternatively locus coeruleus (Berger & Posner,

2000). On the other hand, it is important to distinguish the differences between the two

attention systems. Primary difference between the alerting and orienting systems is the

opposite way they recruit attention. The alerting system is stimuli driven, contrary to the

spatial orienting system which is goal driven. The alerting system engages global attention,

contrary to the spatial orienting system which is responsible for selectively orienting attention

to a certain restricted location. Due to the inability of these two functions to coexist, one

might need to switch off one system when operating the other. Neurologically, it has been

suggested that the right temporal parietal junction (TPJ) acts as a bridge between these

systems. This area receives input from other brain structures regarding novel or alerting

stimuli in the environment and in turn inhibits the cycle of the spatial orienting goal directed

system (Goldfarb & Shaul, 2013). Lastly, executive attention also namely, supervisory,

selective, conflict resolution and focused attention (Raz & Buhle, 2006) involves effortful

control of attention, and is prevalent in task switching, inhibitory control, conflict resolution,

error detection, allocation of attentional resources, planning, and decision making. In

particular, the neuronal activation is present in the anterior cingulate and supplementary

motor area, the orbitofrontal cortex, the dorsolateral prefrontal cortex, and portions of the
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basal ganglia and the thalamus (Fernandez-Duque & Posner, 2001) that are all contribute to

the executive functions and attention.

1.4.2 Attention and Developmental Dyslexia
Attention plays a significant role in developmental dyslexia that affects not only reading and

learning, but also affects various cognitive processes such as attention (Lewandowska et al.,

2014). Therefore addressing attentional difficulties through targeted interventions and

strategies can help dyslexic children improve their reading skills, academic performance, and

overall quality of life. When considering the reading impairments, it can be suggested that

particularly visual attention processing can be affected, which could in part be explained by

the faulty simultaneous activation of the angular gyrus together with visual attention-related

brain areas (Taran et al., 2021). Further proof is carried from multiple different tasks, on

which, in addition to reading difficulties, people with developmental dyslexia have been

shown to have difficulties in, specifically based on the executive and orienting attention

systems, but not the alerting system (Goldfarb & Shaul, 2013). Dyslexia-related reading

difficulties have been shown to possibly stem from impairment in the executive and

attentional control functions of the sluggish attentional shifting (SAS), accompanied with

deficient results on tasks dealing with performing visuospatial working memory and novel

visual patterns. Moreover, failure of the executive control to supervise the functioning of the

phonological loop and the visuospatial sketchpad could possibly help give a full explanation

of the executive function problems manifested by those with developmental dyslexia

(Smith-Spark & Gordon, 2022). 

In developmental dyslexia, multiple regions that are a part of visuo-attentional network seem

to be functioning inefficiently, causing an abnormal serial selection of graphemes in words

leading to difficulties with reading fluently and accurately. Alternatively, compared to

patients with developmental dyslexia, typical readers seem to recruit dorsal attentional

networks (DAN) along with the angular gyrus more. Issues with integration of visual

attention processes and executive functioning in developmental dyslexia can be explained by

the ventral attentional network (VAN) being functionally connected to the fronto-parietal

network in typical readers, but not in developmental dyslexia patients (Taran et al., 2022).
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1.4.3 Cerebellar involvement in Attention
Morphological changes in cerebellum have been associated with attentional deficits in

different populations and amongst different pathologies including Autism Spectrum Disorder,

Attention Deficit Hyperactivity Disorder and Developmental Dyslexia (Stoodley, 2014).

More proof of the link has been shown through studies of cerebellar injury patients (Gottwald

et al., 2003). A study done by Mannarelli and colleagues (2019), aside from its involvement

in selective attention and attentional shifts, further establishes a role of the cerebellum in the

functioning of the attentional networks, particularly the executive network. For instance,

during an attention task, cerebellum showed increased connectivity with dorsal visual stream

regions including posterior parietal cortex (PPC) and left secondary visual cortex (V5).

Additionally, the cerebellum is suggested to maintain internal models related to visual inputs

(D9Angelo, 2018). Executive control as well as other higher cognitive functions have been

linked to cerebellar regions Crus I and Crus II (Kellermann et al., 2012). Furthermore, recent

research by Bukhari et al. (2022) highlights the importance of assessing causal interactions

between the cerebellum and cerebral cortex, utilizing Dynamic Causal Modeling (DCM)

which allows for the identification of directional influences and dynamic relationships

between brain regions, providing a deeper understanding of how cerebro-cerebellar

interactions contribute to cognitive functions relevant to dyslexia.
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1.5 Genetics of Developmental Dyslexia
Genetics play a significant role in developmental dyslexia, with numerous studies indicating

a strong genetic component to the disorder. Although it is highly unlikely that a simple link

between developmental dyslexia and genetic data exists, interest in the <genetic dissection=

still persists. The notion of heritability remains dynamic, as the extent to which genes

contribute to total variance is influenced by factors such as variability in exposure to

unidentified environmental risk factors and the specific attributes of the studied population

(Williams & O9Donovan, 2006). Such endeavors offer the potential for early identification of

individuals at heightened risk and facilitate diagnosis in cases where symptoms present

ambiguously. Additionally, ongoing research on genetic involvement can lead to advantages

in understanding and interventions from an early age (Fisher & DeFries, 2002).

While the precise genetic factors underlying developmental dyslexia remain uncertain, it is

evident that the disorder does not manifest randomly within the population. This assertion is

supported by the elevated risk of occurrence observed among individuals with a familial

history of the condition (Scerri & Schulte-Korne, 2009). Known potential candidate genes

for developmental dyslexia are DYX1C1, KIAA0319, DCDC2 and ROBO1, which could be

responsible for cortical malformations involving neuronal migration and axon growth (Scerri

et al. 2010). These would result in faulty cortico-cortical and cortico-thalamic circuits,

involved in multiple processes (e.g. perceptual, cognitive and sensorimotor) that play a key

role in learning

(Galaburda et al., 2006).

Lastly, Deco et al. (2021) studied how regional differences in gene expression across the

brain affect dynamic interactions and functional integration within neural networks. Using

computational models and empirical data, they found that these gene expression variations

significantly influence the specialization and connectivity patterns of neural circuits.
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2. MRI Physics Fundamentals

2.1 Discovery and characteristics of Magnetic Resonance Imaging
MRI stands out as an extraordinary imaging technology, providing exceptional soft tissue

contrast with high spatial resolution. It presents a tomographic 3D view and the ability to

capture dynamic physiologic changes. By adjusting the acquisition parameters of MR images,

one can generate images that depict a vast range of physical and physiologic phenomena,

drawing on the physics of nuclear magnetic resonance (NMR). Importantly, MRI achieves all

of this in a noninvasive manner, allowing for safe repeated scans within well-defined

technical constraints, without known harm (Plewes & Kucharczyk, 2012).

Magnetic resonance imaging (MRI) has without a doubt been one of the best inventions of

modern medicine. For their contribution to the creation and advancement of this technique

four people have been awarded the Nobel Prize. Firstly, Raymond Damadian received his

Nobel Prize in 1971 for the discovery of different relaxation times in tumor tissue compared

to normal tissue. Following that discovery, Paul Lauterbur discovered that the signal can be

assigned a specific spatial position by introducing the magnetic field gradients, eventually

receiving his Nobel Prize in 1973. Quickly after in 1974 and 1975, Sir Peter Mansfield and

Richard Ernst contributed with their inventions allowing the possibility of selecting a specific

plane or a slice of an object and the ability to assign the signal components coming from each

spatial position using what is known as the Fourier Transform, respectively (Dreizen, 2004).

2.2 Fundamentals of Magnetic Resonance Imaging
Majority of the imaging we are able to perform today is based on the spin of a singular proton

of Hydrogen (1H). As long as they have an odd number of protons, other nuclei are also able

to exhibit spin (e.g., Calcium), 1H is just more commonly used, considering the amount of 1H

we have in our body and brain due to its natural constitution being mostly water (Plewes &

Kucharczyk, 2012).

To be able to exploit the electromagnetic properties of 1H it is necessary to introduce a

magnetic field. In MRI, this magnetic field is called B0. B0 is constant, it has a direction and

magnitude. When a proton is introduced to the B0 it starts precessing around it at Larmour

frequency (ωL), expressed by the following formula (2.1):
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ωL = γB0 = ω0

(2.1)

As briefly mentioned before, spin is the key factor. Spin has the spin quantum number (I)

which parametrizes the intrinsic spin of particles. It can only be in multiples of ½. Each

nucleus can have only a certain number of spin states (m), depending on I.

m = I, (I-1), (I-2), …, -I

(2.2)

For 1H, m = − ½ , + ½ . Therefore, spin or intrinsic angular momentum (P) can be expressed

by:

P =h/2π√I(I + 1)

(2.3)

Where h is the Plank constant and I is the spin quantum number.

When we have P, we can associate a dipolar magnetic moment (μ) via gyromagnetic constant

(γ) which is a characteristic of each nucleus (Brown et al., 2014). We can express this in a

formula:

μ = γ P

(2.4)

The response of a system to a magnetic field is described by its magnetization, denoted as M.

When no external magnetic field ( B0= 0) is present, the spins within the system are randomly

oriented, resulting in a net magnetization of 0.

Prior to the introduction of the external magnetic field (B0), each magnetic dipole (μ) in the

system is randomly oriented. However, when the magnetic field (B0) is applied, these dipoles

begin to precess at the Larmour frequency. They align either parallel or antiparallel to the

direction of B0, with a slight preference for alignment parallel to B0. This alignment adds up,

resulting in a net positive magnetization (M). Magnetization (M) can be represented as a

vector, comprising both a longitudinal component (Mz) and a transverse component (Mxy).
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With enough time in the magnetic field, the magnetization M reaches a stable equilibrium

value, denoted as M0 (Huettel et al., 2008).

Figure 2.1 Spin axis alignment. (A) Random alignment of spin axis of protons in the absence of an external

magnetic field. (B) Introduction of an external magnetic field allows for the spin axis of each proton to be

oriented either parallel or antiparallel to the magnetic field (Huettel et al., 2008).

When M0 aligns with B0, it becomes challenging to measure. To overcome this, one can aim

to reorient M0 perpendicular to B0, which is achieved while the system is in equilibrium. The

reorientation can be achieved by interacting with M0 using an electromagnetic field called

B1(t), which is generated by a transmission coil. Moreover, for an effective reorientation,

B1(t) must meet specific criteria with the oscillation at the Larmour frequency, to be

positioned orthogonally to B0, and to have an amplitude (B1) and duration that allow

alignment of M1(t) with the transverse plane defined by B0 and B1(t). In that respect, a

radiofrequency (RF) receiver coil can then be used to detect the signal from the

magnetization Mxy(t), which is precessing in the xy plane around B0. This detection creates a

variable magnetic field flux in the RF receiver coil (Giovannetti et al., 2014).

2.3 Image reconstruction
Recorded is a signal from the brain in <time=, which oscillates in the radiofrequency

spectrum and encompasses several frequency components. This signal fills k-space. K-space

is a mathematical representation of the spatial frequency domain, containing all spatial

frequency information of the MRI signal (Plewes & Kucharczyk, 2012). Fourier transform

plays a vital role by combining frequency, phase, angle, and amplitude elements to derive

stripe patterns crucial for image reconstruction. Each image corresponds to a unique array of

these patterns, summarized within k-space data. The center of the k-space, maximum
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amplitude of the signal, contains all the information about the image, while the details are in

the edges of the k-space. MRI uses magnetic field gradients to distinguish different spatial

positions, by making slight variations of the static magnetic field B0, along specific spatial

directions superimposed on B0, generating frequencies of precession dependent on the

position. Each signal can be described in time or in frequency, with the possibility to convert

these two representations from one to the other using the Fourier transform. Fourier transform

is a mathematical operation allowing for the extraction of the signals of various components

coming from different spatial positions (Plewes & Kucharczyk, 2012).

Frequency encoding and phase encoding are two fundamental MRI techniques used to

spatially encode the received signal. Frequency encoding and the use of frequency encoding

magnetic field gradients allows to distinguish positions along one axis. Phase encoding and

the use of phase encoding magnetic field gradients allows to distinguish positions along an

axis orthogonal to the one used for frequency encoding by controlling the initial value of the

signal from the spin, also known as its phase. A third direction, orthogonal to both phase and

frequency encoding directions, called Z axis, uses slice selection magnetic field gradients,

with which we can image the whole object (Haacke et al., 1999).
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2.4 Relaxation
As soon as the radiofrequency (RF) pulse is switched off the protons start to fall out of phase

with each other and return to equilibrium, otherwise described as, protons relax. During this

relaxation process within the receiver coils, transverse magnetization Mxy induces a signal

known as Free Induction Decay (FID) (Weishaupt et al., 2006). Return to the equilibrium is

based on two mechanisms:

1. Longitudinal spin-lattice relaxation (T1)

2. Transverse spin-spin relaxation (T2)

Longitudinal spin-lattice relaxation (T1) is a phenomenon in which magnetization Mxy

recovers its alignment along the Z axis, the direction of the static magnetic field B0, due to the

exchange of energy between spins and the lattice. The exchange of energy is dependent on

the microstructure as exchange is more efficient when there are more collisions between

spins and lattice. T1 is a time constant that is a measure of time needed for the magnetization

M(t) to go back to equilibrium, after the system is perturbed with the B1(t) radiofrequency

pulse (Hashemi et al., 2012). Formula 2.5 illustrates how the longitudinal magnetization

increases from an initial perturbed state towards its equilibrium value exponentially over

time, with the rate of increase determined by the T1 relaxation time constant. As time

increases, the exponential term e approaches zero, causing the magnetization to approach its

equilibrium value M0.

(2.5)

T1 is the exponential constant corresponding to the point when the magnetization Mz (t=T1),

which was zero immediately after the B1 pulse, has recovered 63% of the equilibrium

magnetization M0.
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Figure 2.2. Illustration of T1 relaxation constant. M_Z starts from 0 and grows back to M_0 with an

exponential curve (Hashemi et al., 2012).

Transverse spin-spin relaxation is a phenomenon in which due to interaction between spins

there is a loss of coherence, and therefore energy. This phenomenon can be pictured as

dephasing of the spins, consequence of which is the disappearance of the transverse

magnetization Mxy (Hashemi et al., 2012). Formula 2.6 illustrates how the transverse

magnetization exponentially decays over time, with the decay rate determined by the T2

relaxation time constant. As time progresses, the exponential term e approaches zero,

resulting in the decay of the transverse magnetization towards zero.

(2.6)

T2 is an exponential constant corresponding to the time needed for Mxy (t=T2) to be reduced

by 63% of its initial value.

Figure 2.3. Illustration of T2 relaxation constant. The decay is characterized by a time constant, T2, which

corresponds to the time needed for Mxy to be reduced by 63% of its initial value (Hashemi et al., 2012).

As B0 is not homogeneous, with local variations in Larmour frequency and consequent phase

dispersion between the spins, the disappearance of Mxy is affected, FID decays faster than if

B0 was perfectly uniform. Therefore, it9s important to introduce transverse relaxation constant

T2* which accounts for the faster FID (Hashemi et al., 2012).
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2.5 Sequences and different image contrasts
Understanding MRI pulse sequences offers insight into the imaging process. By

manipulating various timing parameters, it becomes feasible to generate images that capture

distinct contrasts corresponding to different relaxation mechanisms. This capacity to adjust

timing parameters enables the creation of images tailored to highlight specific tissue

characteristics, facilitating enhanced diagnostic capabilities in MRI imaging (Plewes &

Kucharczyk, 2012).

Tissues can be divided into:

o fluids

o water-based tissue

o fat-based tissue

Every tissue type is characterized by proton density (PD) (number of protons in a voxel), T1

relaxation time and T2 relaxation time (McRobbie, 2005). Through sequences, the MR signal

can be sampled at different points during the relaxation process, influencing image contrast.

Images exhibiting T1 contrast are termed T1-weighted images (T1w), while those

emphasizing T2 contrast are referred to as T2-weighted images (T2w). Furthermore,

sequence is a succession of commands executed in such a way to present us with the desired

signal and image, making them suitable for diagnostic purposes by emphasizing certain tissue

characteristics or pathological features. Eco time (TE), time interval between excitation and

time when the signal from the center of k-space is acquired, and repetition time (TR), time

between two successive excitation pulses, are sequence parameters that have the most

influence on image weighting, which can be changed by the operator. Weighting of the image

is manipulation of the magnetization so that the properties PD, T1 and T2 are reflected

differently depending on the image we want to acquire. Short TR provides better contrast and

a lower signal-to-noise ratio, and a longer TE results in a lower signal-to-noise ratio (Huettel

et al., 2008). In case of discriminating between pathologies, it is possible to use a contrast

agent (e.g. gadolinium) to improve the specificity of the MRI by providing extra weighting.

Other properties, magnetic resonance can be sensitive to include water diffusion mechanisms,

magnetization transfer, blood oxygenation, tissue perfusion, blood vessels, and metabolism

(Tsougos, 2018).
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2.6 Functional Magnetic Resonance Imaging
Functional magnetic resonance imaging (fMRI), a neuroimaging procedure performed in the

MRI scanner, is sensitive to blood flow changes in the brain present during the exposure to

specific stimuli or even at rest. Moreover, the blood flow changes are associated with the

functional brain activity, albeit indirectly (Tsougos, 2018). Strengths of fMRI include high

spatial resolution, availability in both clinics and academic research and noninvasiveness of

the method (Glover, 2011). Majority of the limitations stem from the fact fMRI isn9t a direct

measurement of neuronal activity, as well as the amount of noise present from the

environment and physiology. Functional magnetic resonance imaging has seen growing

utilization in clinical settings, although its origins lie predominantly in research. Initially

employed to map brain activity elicited by specific stimuli or tasks (including sensory, motor,

cognitive, and emotional functions) in healthy subjects, its scope has expanded to encompass

the study of neurobehavioral disorders such as Alzheimer9s disease, epilepsy, traumatic brain

injury, and brain tumors. Notably, in the context of tumor pathology, fMRI has emerged as a

well-established clinical tool, particularly for pre-surgical mapping purposes (Tsougos, 2018).

2.6.1 Principles of Functional Magnetic Resonance Imaging

Brain function requires a lot of energy, consumption of which functional MRI measures via

the rate of oxygen consumption utilizing the blood oxygenation level-dependent (BOLD)

signal, a measure used in functional magnetic resonance imaging (fMRI) to detect changes in

brain activity. The oxygen necessary is delivered in the blood, following the premise that high

energy required results in high oxygen delivery and increased blood flow. An important role

is played by an iron-containing metalloprotein in the blood cells that acts as oxygen

transporter, called Hemoglobin (Hb). It is possible to distinguish paramagnetic

deoxyhemoglobin, when no oxygen is bound to the hemoglobin, and diamagnetic

oxyhemoglobin, when oxygen is bound to the hemoglobin. The paramagnetic properties of

deoxyhemoglobin cause alterations in the local magnetic fields, which in turn causes

dephasing of protons due to less uniformity in the magnetic field, reducing the transverse

relaxation constant T2* and increasing the decaying of the signal (Tsougos, 2018). T2*

relaxation times can be directly related to the amount of iron present (Ghadery et al., 2015).

Diamagnetic oxyhemoglobin causes a more uniform magnetic field, increasing the MRI

signal. When there is an activation cells will consume more oxygen increasing the

deoxyhemoglobin and decreasing the amount of MR signal. Furthermore, the implications
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extend beyond this point. Increase in consumption of oxygen is compensated by an increase

in oxygen-rich arterial blood flow, causing an increase in oxyhemoglobin amount, that is, at

the capillary level, much larger compared to the amount of deoxyhemoglobin (Tsougos,

2018). Illustrations for the BOLD effect in fMRI can be seen in the figure 2.4 below.

Figure 2.4 Illustration of BOLD effect in functional MR. When an activity is present, cells consume oxygen,

increasing the amount of deoxyhemoglobin in the blood. Following this there is an increase in arterial blood

flow in order to compensate for this consumption, leading to an increase in oxyhemoglobin (Tsougos,2018).

Hemodynamic response provides the delivery of blood to active neuronal tissues.

Hemodynamic response function (HRF) is a mathematical transfer function of neuronal

activity and BOLD signal, that is dependent on cerebrovascular reactivity and neurovascular

coupling (Rangaprakash et al., 2018) that can provide some information about the

characteristic pattern of changes in blood flow, blood volume, and oxygenation that occur in

response to neuronal activity in the brain. Particularly in that sense, BOLD signal9s

hemodynamic response encompasses multiple subsequent stages. These stages typically

follows a well-defined temporal profile, which includes an initial dip that can be explained as

a transient decrease in the level of oxygenated hemoglobin (oxyhemoglobin) and an increase

in the level of deoxygenated hemoglobin (deoxyhemoglobin) after a neuronal activity. This

initial dip is thought to be related to increased oxygen consumption by activated neurons

(Voss, 2016) . Then, following the initial dip, there is a rapid increase in blood flow, leading

to an overshoot in the level of oxyhemoglobin and an increase in blood volume in the
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activated region. After the positive peak, there is a period of relative undershoot, during

which blood flow and oxygenation levels dip below baseline levels (Rangaprakashet

al.,2021). Therefore, it is important to note that modeling the HRF to estimate neural activity

from observed changes in BOLD signals in fMRI studies can be useful to understand and

identify abnormalities in neurovascular dynamics, which may be indicative of neurological

disorders. BOLD hemodynamic response includes a series of stages. Firstly, an initial

decrease for the duration of 1 second is attributed to a transient increase in the amount of

deoxyhemoglobin. Following is an increase in neuronal activity relative to baseline levels,

observed to result in an increased hemoglobin blood flow. Due to the delivery of more

oxygen than originally extracted from a certain brain area result in a reduction of the

deoxyhemoglobin amount. The signal rises to a maximum value as a peak of hemodynamic

response. If neuronal activity stretches over a prolonged period of time, the peak may

similarly expand to a plateau and is typically maintained at a slightly below the peak.

Following the stop of neuronal activity, the amplitude of the BOLD signal plummets below

the baseline where it remains for an extended period of time. This effect is titled the post

stimulus undershoot (Huettel et al., 2014).

Figure 2.5 Illustration of the BOLD hemodynamic response to a (A) single short event and (B) multiple

sequential blocks of events (Huettel et al., 2014).

2.6.2 Experimental design
Experiments, fMRI or otherwise, are based on an intervention in a system and observing how

this intervention modulates the system response (Amaro & Barker, 2006). Main aim is to

design a task which accurately tests a specific hypothesis about a certain mental process.
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In functional magnetic resonance imaging (fMRI) research, different experimental designs

are employed to investigate brain function and cognitive processes. Three common types of

experimental designs used in fMRI studies are block design, event-related design, and mixed

design (Figure 2.6) (Tsougos, 2018). Moreover, in a block design, by alternating between

presenting a sequence of stimuli within a condition and epochs with a different condition,

cognitive engagement in a task can be ensured. Two epochs of each condition represent a

cycle (Figure 2.6 a). However there are some limitations that should be keep in mind

including the inability to distinguish between correct and error trials, no regards for transient

responses of the beginning and end of the task, possibility of opposite responses being

summed in a single block, averaging the overall response and decreasing the magnitude of

responses (Tsougos, 2018). On the other hand, the event-related design encompasses different

condition trials that are presented in random sequences and not grouped in blocks, with

sufficient time between different responses called inter stimulus interval. Compared to block

designs, event-related designs allow avoidance of cognitive adaptation by adjusting the inter

stimulus interval (Tsougos, 2018). Additionally, it is less sensitive to head motion artifacts,

can be used to assess practice and allows for randomization of the order of conditions (Amaro

& Barker, 2006). In that sense, it can be said that block designs are better at detecting an

activation when we desire to conclude if a region is active or not, and event-related designs

are better at characterizing the time course of activation when we are interested in more

detailed characteristics of the neuronal response to the cognitive manipulation (Chen &

Glover, 2015). Another common type of design is the mixed designs which have

characteristics of both block design, in regard to the measurement of repetitive sets of stimuli,

and event-related designs, in regards to the transient responses detected. Mixed designs allow

for understanding of 8what9 the role of a certain node of a network is subsiding a task (Amaro

& Barker, 2006).
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Figure 2.6. Illustration of (a)Block design, (b) Event-Related (ER) design and (c) Mixed design. The <on=

and <off= levels indicate that the stimulus is either presented for an experimental or a control condition

(Chen & Glover, 2015).

An alternative study design is resting-state design, where a participant lays inside an MRI

scanner while not performing any tasks, allowing us to observe BOLD signal changes related

to spontaneous activity (Amaro & Barker, 2006). The acquisition of the data is similar to that

of event-related studies. This design relies heavily on the performance of each individual, as

well as the variability between participants, the frequency of events per condition, and

consequently, the statistical power of the study is largely uncertain beforehand (Chen &

Glover, 2015).
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3. Dynamic Causal Modeling for fMRI

3.1 Brain connectivity
Neurons do not operate autonomously, but rather function within intricate networks and

systems, where their activities are influenced by broader neural circuits. They interact with

other neurons and neural populations in an organized way through their afferent and efferent

connections, giving rise to the ability to perform a plethora of different sensorimotor and

cognitive tasks (Horowitz, 2003). Understanding brain connectivity is fundamental to

unraveling the mechanisms by which neurons and neural networks encode and process

information. Connectivity profoundly influences neural activity and, consequently, neural

coding (Sporns, 2007). The umbrella term 8brain connectivity9 encompasses:

-Anatomical connectivity defined as the pattern of anatomical connections among

distinct units within a nervous system (e.g. synapses, fiber pathways),

-Functional connectivity defined as the pattern of statistical dependencies among

distinct units within a nervous system,

-Effective connectivity defined as the pattern of causal interactions among distinct

units within a nervous system.

According to Rykhlevskaia et al. (2008) these three connectivity types are closely related to

each other. In that sense, possible measures depend on the type of connectivity. Until the

development of in vivo imaging techniques, it was impossible to measure white matter

integrity necessary to understand structural connectivity, which is why until that point

research has been done using histological methods in animals. Results of these studies were

hard to translate to humans. At this point in time, Diffusion Tensor Imaging (DTI) is the most

commonly used MR technology for describing structural connectivity. On the other hand, due

to its basis on brain activity, there are multiple viable options to measure functional

connectivity including such as Positron Emission Tomography (PET), Functional Magnetic

Resonance Imaging (fMRI), Electroencephalography (EEG), Magnetoencephalography

(MEG) and event-related optical signal (EROS) (Rykhlevskaia et al., 2008). In the context of

effective connectivity, various methods including the Dynamic Causal Modeling (Friston et

al., 2003) proposed to investigate causal interactions between brain activities in different

regions of interest obtained by the fMRI data. The choice of method depends on factors such
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as the experimental design, the nature of the data, and the specific research questions being

addressed. Furthermore, Dynamic Causal Modeling (DCM) for fMRI data is considered a

powerful approach to analyze effective connectivity in terms of activation between brain

regions of interest (Stephan & Friston, 2010). An example illustration explaining the different

connectivity modalities can be seen in the figure 3.1 below.

Figure 3.1. Illustration of different modalities of brain connectivity, namely structural connectivity (i.e., fiber

pathways), functional connectivity (ie., correlations), and effective connectivity (i.e., information flow) among

four brain regions in macaque cortex (Sporns, 2007).
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3.2 Conceptual basis of Dynamic Causal Modeling
Dynamic causal modeling (DCM) is a generic approach allowing inference of hidden

(unobserved) neuronal states from measured brain activity, first introduced in 2003 for fMRI

data through Statistical Parametric Mapping (SPM) software (Stephan et al., 2010). Direct

observation of hidden neuronal states via fMRI remains unattainable, nevertheless, yet

successful modeling endeavors are. Friston and colleagues (2003) posit that DCM is based on

the idea that the brain is a deterministic nonlinear dynamic system that receives inputs m and

produces outputs l. In addition, Stephan and colleagues (2010) defined five key features of

DCM. Firstly, DCM is based on differential equations for describing neuronal dynamics.

Next, DCM is causal, based on the fact they describe how dynamics in one neuronal

population cause dynamics in another neuronal population, and the influence endogenous

brain activity, as well as experimental manipulations, have on these interactions. Thirdly,

DCM wants to achieve neurophysiological interpretability. Fourthly, DCM uses a forward

model to be able to link the modeled neuronal dynamics and specific features of measured

data. Lastly, DCM is based on the Bayesian model which uses principles of Bayesian

statistics to infer and compare models of brain connectivity.

DCM is used to test a specific hypothesis, based on which the experimental design is made

(Friston et al., 2003). Therefore, data sets acquired in absence of experimental control, like in

resting state fMRI, are not suitable. It is necessary for the DCM to have a relation to the

experimental design, which in fMRI is established by an initial analysis using conventional

SPM based on general linear model (GLM) (Stephan et al., 2010). GLM is a statistical

framework commonly used in functional magnetic resonance imaging (fMRI) analysis to

estimate and test neural activity related to experimental conditions or tasks. The GLM models

the relationship between the observed fMRI data and the experimental design by representing

the fMRI time series as a linear combination of explanatory variables (Monti, 2011).

DCM serves as a computational approach for specifying models of effective connectivity,

which encompasses the bidirected causal influences among brain regions, essentially

representing how one region affects another. These models facilitate the estimation of

connectivity parameters and the testing of hypotheses. Effective connectivity, typically not

directly observable, necessitates the use of models that span various spatial and temporal

scales. These scales include the microscopic activity of neural populations, the meso- or
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macroscopic resolution of measurements, and population-level effects suitable for

characterizing individual subjects (Zeidman et al., 2019a).

Model of effective connectivity can be represented in the equation 3.1 as:

ż = F(z,u,θ)

(3.1)

Where z represents neuronal states, F is a nonlinear function describing the

neurophysiological influences that activity z in all l brain regions and inputs u exert upon

changes in the others. Ꝋ are the parameters of the model whose posterior density is required

for inference. The ż represents activity state change over time, mathematically represented in

the equation 3.2 as:

ż = = f (z, u) ����
(3.2)

Specifically, the bilinear form of equation 3.1. can be notated as in the equation 3.3:

(3.3)

Vectors Ꝋ, in the equation 3.3., are expressed through matrices A, B and C. Matrix A

represents a set of 8exogenous connections9, which specify regions that are connected and

whether these connections are uni- or bidirectional. Matrix B represents a set of modulatory

connections, Bj, that specify which intrinsic connections can be changed by which inputs.

Because Bj are second-order derivatives they are referred to as bilinear. Matrix C specifies

which inputs are connected to which regions (Penny et al., 2010).
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Transitioning from neuronal activity to fMRI activity by an extended version of a DCM

hemodynamic model, called <Balloon model= originally introduced by Buxton and

colleagues (1997) in order to reveal the coupling dynamics between neural activity and

BOLD responses. The <Balloon model= describes the causal mechanisms within a

hemodynamic process in a certain region of interest (ROI) during brain activation (Zhang et

al., 2016).The changes in neural activity elicit a vasodilatory signal that leads to increases in

blood flow and subsequently to changes in blood volume and deoxyhemoglobin content. The

predicted BOLD signal is a non-linear function of blood volume and deoxyhemoglobin

content (Marreiros et al., 2010). This model elaborates on how neuronal activity changes give

rise to changes in blood oxygenation measured in fMRI. It involves a set of hemodynamic

state variables, state equations and hemodynamic parameters (Penny et al., 2010).

The BOLD signal can be seen as a measurable (or observed) variable y of the neural activity z

which we are not able to measure using fMRI, indicating the neural activity as an example of

a <hidden neuronal state variable= (Kahan & Foltynie, 2013). The predicted BOLD signal is

a nonlinear function of blood volume and deoxyhemoglobin content (Marreiros et al., 2010).

In formula 3.4 Marreiros and colleagues (2010) elaborate that for any given combination of

parameters Ꝋ and inputs u, the measured BOLD response y is modeled as the predicted

BOLD signal (the generalized convolution of inputs F(z,u,θ)) together with a linear mixture

of confounds Xβ and Gaussian observation error ϵ.

y=F(z,u,θ)+Xβ+ϵ

(3.4)

Figure 3.2 illustrates how experimental manipulation directly perturbed neural activity.

Connections presented are either extrinsic (between different regions) or intrinsic (within

region; self-connections).
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Figure 3.2 Illustrates a fMRI experiment with two different experimental manipulations. (A) The BOLD

signal from three hypothetical brain regions is represented by y(1), y(2) and y(3). (B) The BOLD signal from

a single region is produced by a change in its underlying neural activity z. The underlying neural activity of

region 1 has an effect on the underlying neural activity of region 2 (an extrinsic connection), the strength of

which is determined by the value a(2,1). The underlying activity of region 1 also has some self-inhibitory

dynamics (intrinsic connection), determined by the value a(1,1). (C) Shows the rate of change of each of the

regions' underlying neural activity, ż. (D) This is modeled as a modulatory input having an effect on the

strength of the extrinsic connection a(2,3) (E). The strength of this effect is determined by the value b(2,u2).

(F) The equations changed to accommodate the additional modulatory input (Kahan & Foltynie, 2013).
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3.3 Bayesian Model Selection and Estimation
Bayesian model selection and estimation are statistical techniques used to identify the most

appropriate model among a set of candidate models and estimate the parameters of the chosen

model based on observed data (Stephan et al., 2010). These techniques are rooted in Bayesian

statistics, which provides a framework for quantifying uncertainty and updating beliefs about

model parameters and hypotheses. DCM facilitates two primary types of inference,

contingent upon the research focus.

Bayesian model selection (BMS) is a powerful method which determines which among the

competing hypotheses is the most likely to constitute the mechanism that generates the

observed data. Specifically, for DCM BMS is used to discern among different system

architectures. DCM relies on using differential equations for biophysical modeling and

Bayesian statistical methods for model inversion (parameter estimation) and comparison

(Marreiros et al., 2010). Bayesian estimation provides estimates of two quantities. The first

being the posterior distribution over model parameters p(θ|m,y) allowing for inferences

about model parameters θ. The second is model evidence, the probability of observing the

data y in the model m (Friston et al., 2003). Model comparison and selection derives from the

model evidence p(y|m) (Marreiros et al., 2010). The model evidence can be presented as:

p(y|m)=∫p(y|θ,m)p(θ|m)dθ

(3.5)

Firstly, if we were interested in the neurophysiological mechanisms encoded by specific

parameters in a given model, we need inference on model parameters. Alternatively, if our

inquiry pertains to broader aspects of model structure rather than specific model parameters,

we require inference on the model space. In both cases we need Bayesian Model Selection

(BMS), with the slight difference that for inference on model space BMS is sufficient, and for

inference on model parameters BMS is required even when we are interested in values of

model parameters and not model structure. When doing a single-subject analysis, simply

evaluate the posterior density of the parameter of interest, comparing the probability with

some threshold. The choice between fixed effects (FFX) and random effects (RFX) in

population-based analyses depends on the treatment of parameters of interest.
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In BMS, models are usually compared via the ratio of their respective evidence (Bayesian

factor) or via their difference in log-evidence (relative log-evidence) (Stephan et al., 2010).

The (negative) free-energy F, handles posterior and priors9 dependencies, while being an

objective function optimized during model inversion (parameter estimation) in DCM

(Marreiros et al., 2010). The (negative) free-energy F is widely used in neuroimaging and

mostly preferred in DCM studies (Penny et al., 2010). Variational Laplace or Model inversion

(parameter estimation) uses a Bayesian scheme, with empirical priors for the hemodynamic

parameters and zero-mean shrinkage priors for the coupling parameters (Stephan et al.,

2008). Inversion of a DCM constitutes minimizing the (negative) free energy F in order to

maximize the model evidence or marginal likelihood. The primary objective is to identify the

most appropriate model rather than focusing solely on parameter inference. In fMRI, BMS

has consistently been used to choose among competing DCMs (Marreiros et al., 2010).
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3.4 Bayesian Parameter Averaging and Bayesian Model Averaging
Bayesian Parameter Averaging (BPA) and Bayesian Model Averaging (BMA) are two related

Bayesian statistical techniques used in model selection and estimation. Bayesian Parameter

Averaging (BPA) focuses on averaging parameter estimates across multiple models, while

Bayesian Model Averaging (BMA) focuses on averaging predictions or inferences across

multiple models. Both techniques provide a principled framework for integrating information

from multiple models and accounting for uncertainty in model selection, leading to more

robust and reliable results. While they share similarities, they differ in their focus and

application. Analysis of parameter estimates across the group is based on whether the

mechanisms encoded by the model parameters of interest in the population can be found as

fixed or random effects. When talking about basic physiological properties that do not differ

between sampled subjects (fixed effects) we can consider Bayesian parameter averaging

(BPA) as a likely alternative method. BPA is able to compute a joint posterior density of the

whole group by combining posterior densities of each individual, in such a way, that posterior

of one individual is considered the priori of another (Stephan et al., 2010).

When talking about random effects, subject specific maximum a posteriori (MAP) estimates

should be entered into a second-level frequentist test (e.g. t-test or ANOVA). Alternatively, it

is possible to use Bayesian Model Averaging (BMA), which utilizes the whole model space

or an optimal family of models to be able to compute weighted averages of each model

parameter. Weighting is provided by the posterior probability for each model. BMA is useful

when none of the models outperform each other, or when comparing parameter estimates

between different groups for which BMS indicates group differences with regard to the

optimal model. It is crucial to correct for multiple comparisons when testing hypotheses

regarding multiple comparisons (Stephan et al., 2010). Figure 3.3 summarizes the sequence

of data analysis steps based on the type of inference obtained.
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Figure 3.3. Illustrates typical sequence of analysis in DCM with consideration of the research question.

FFX= fixed effects, RFX= random effects, BMS=Bayesian Model Selection, BMA= Bayesian Model

Averaging, ANOVA= analysis of variance (Stephan et al., 2010).

3.5 Subject level analysis
Considering that DCM is a hypothesis-driven approach, it is paramount for the successful

results that experiment design is adequate. It is necessary for the hypotheses to be clearly

articulated, in connection with the effects at the within-subject level, the between-subject

level, or both. We can deem the DCM forward (generative) model as a procedure which

generates neuroimaging time series from underlying causes such as neural fluctuations and

connection strengths. These time series are contingent upon the model's parameters (Zeidman

et al., 2019a). An effective within-subject design usually encompasses the independent

variation of at least two separate experimental factors. Typically, one factor involves altering

the stimuli that drive neural responses, while the other factor involves adjusting the task

demands or context that modulate these responses (Figure 3.4) (Zeidman et al., 2019a).
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Figure 3.4. Illustrates a forward model in DCM for fMRI which encompasses the neural, observation and

measurement segments. Neural model is driven by experimental stimuli, resulting in neural activity which

causes a hemodynamic change in blood flow mediated by neurovascular coupling. Finally, BOLD signal is

generated. By adding the observation noise we get the fMRI time series (Zeidman et al., 2019a).

To elaborate further, formula 3.6. can be interpreted as parameters controlling the region's

excitatory-inhibitory balance, mediated by the interaction of the pyramidal cells and

inhibitory interneurons. These parameters are negative and prevent run-away excitation in the

network, a phenomenon in neural systems where neural activity becomes excessively

amplified, leading to uncontrolled and potentially harmful levels of excitation. It is

implemented via a necessary divide of the average connectivity matrix A and modulatory

input matrices B(k) into two parts: intrinsic within-region self-inhibition (AI, BI) and extrinsic

between region connectivity (AE, BE) where -0.5Hz is the default strength of the

self-connections (Zeidman et al., 2019a).

(3.6.)

Once a forward model is specified, data simulation is possible under various models (e.g.

with distinct connectivity architectures), establishing which simulation best characterizes the

observed data. This process unfolds in two stages:

1) Model inversion (i.e., estimation) allows for choosing the parameters that offer the

best trade-off between the model accuracy and the complexity, which is quantified by

the model evidence

2) Hypotheses can be tested through the comparison of the evidence across different

models with varying network architectures, both at the single-subject or group level.

The first level analysis incorporates neural responses at the within-subject level. Following

model specification, next step entails acquisition of a full forward generative model,

encompassing neural, hemodynamic, and noise contributions. Consequently, the selected

models are specified, fitted, and deemed suitable at the single subject level (Zeidman et al.,

2019a). Figure 3.5 illustrates an example of experimental timing and timeseries from a paper

by Zeidman and colleagues (2019a).
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Figure 3.5 Illustration of an example of the prerequisites for DCM analysis of task fMRI data including the

design (U) and data (Y). On the left in the Experimental inputs U, white areas indicate times during the

experiment when experimental stimuli were shown to the subject (Zeidman et al., 2019a).

Within-subject level specifies and compares different models of evidence from different

measurement techniques, to infer the neural responses of individual subjects. Following is the

model parameters analysis at the second (between-subject) level, where the commonalities

and differences across subjects are assessed (Zeidman et al., 2019b).

The data of each subject undergoes DCM specification and estimation of parameter

probability density. Using the General Linear Model (GLM) the parameters of interest are

modeled, and any unexplained between-subject variability is captured by a covariance

component model. Figure 3.6 illustrates potential methods and their implementation in the

SPM software via consequent Matlab functions defined in the column <Function name=, as

well as their description in the column <Description=. For example, in Matlab (The

MathWorks, Inc., 2023) using a function spm_dcm_specify allows for specification of the

details of a DCM model for fMRI for a single subject, which involves defining the

architecture of the neural network, specifying the experimental inputs, and setting up the

parameters to be estimated or constrained within the model.
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Figure 3.6 Illustrates a list of MATLAB functions for SPM software utilized in DCM analysis of fMRI data

(Zeidman et al., 2019a).
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4. Materials & Methods
Recruitment of participants, data collection and partial image preprocessing were done for a

published study by Mascheretti and colleagues (2021).

4.1 Participants
Participants were originally recruited for Mascheretti et al. (2021).

Total cohort for the existing study includes 90 subjects with 45 typical readers (TR) and 45

developmental dyslexia (DD) participants. Current study includes 2 groups of participants

with the total of 40: TR group consists of 20 participants (age M=13.5, SD=1.80; 7 girls), and

DD group consists of 20 participants (age M=14.1, SD=1.55; 6 girls). As the original study

also investigated the genetic component of developmental dyslexia, specifically DCDC2

genetic mutation, it is taken into consideration while creating the subgroup of the current

study. From the full cohort, 4 participants, 2 from the TR group and 2 from the DD group,

had been selected with the genetic mutation from the overall n. of subjects of 90. DD group

had a clinical diagnosis of developmental dyslexia based on The Diagnostic and Statistical

Manual of Mental Disorders (DSM IV) (APA, 2006). All participants underwent

neuropsychological assessments to test IQ (Wechsler, 2006), reading (Cornoldi 1995;

Cornoldi, 1998; Sartori et al.,1995; Arina et al.,2013), Verbal Working Memory (VWM)

(Reynolds & Bigler, 1994), phonological skills (Bartelli & Bilancia, 2006), hand preference

(Briggs & Nebes, 1975) and ADHD (Conners, 1989; Conners et al., 1998; Nobile et al.,

2007).

4.2 MRI Acquisition
MRI data were collected using a 3T Philips Achieva d-Stream scanner (Best, The

Netherlands) equipped with a 32-channel head coil. Visual stimuli were generated using

Presentation software (Neurobehavioral System Inc., Berkeley, CA, USA) and presented via

a VisuaStim digital device for fMRI (Resonance Technology Inc., Northridge, CA, USA).

Participants viewed the stimuli through MRI-compatible goggles featuring dual displays,

operating at a frame rate of 60 Hz and spatial resolution of 800 × 600 (4/3 aspect ratio),

subtending a horizontal visual angle of 30 degrees. Responses and reaction times were

recorded using an MRI-compatible pad. The MRI protocol included acquisition of a

T1-weighted anatomical scan using a 3D Turbo Field Echo sequence, serving as a
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morphological reference (Field Of View (FOV) = 256 × 256 × 175 mm3, voxel size = 1 × 1 ×

1 mm3, shortest Time of Repetition (TR) (~8.1 ms), shortest Time of Echo (TE) (~3.7 ms),

Flip Angle (FA) = 8 degrees). Functional MRI (fMRI) data were acquired using a

T2*-weighted Gradient Echo planar sequence (FOV = 240 × 240 mm^2, voxel size = 3 × 3

mm2, slice thickness = 3 mm, slice gap = 0.5 mm, slice number = 39, TR = 2 s, TE = 26 ms,

FA = 90 degrees).

4.3 fMRI Task Design

4.3.1 Full-field Sinusoidal Gratings
The task comprised 14-second blocks of "M stimuli" (Figure 4.1), "P stimuli" (Figure 4.2)

and blank stimuli (consisting solely of a fixation point). The stimuli were specifically meant

to target M- and P- pathways. The M stimulus presented as a monochrome, low spatial

frequency, high temporal frequency, high luminance contrast, full-field sinusoidal grating

with sinusoidal counterphase flicker. On the other hand, the P stimulus presented as a high

color contrast, high spatial frequency, low temporal frequency, low luminance contrast

full-field sinusoidal grating with sinusoidal counterphase flicker. Specifically, the M stimulus

featured a 100% luminance contrast, black-and-white grating with a spatial frequency of 0.5

cycles per degree (cpd) and a flicker frequency of 15 Hz. On the other hand, the P stimulus

comprised a low luminance contrast, high color contrast red-green grating with a spatial

frequency of 2 cpd and a flicker frequency of 5 Hz. The blank stimulus presented a gray

screen with mean luminance, with the outer borders of each stimulus fading into gray to

prevent sharp visual edges. Both gratings were displayed at one of six orientations with

orientation changes occurring every 2.33 seconds. In total there were 28 blocks (8 M, 8 P, and

12 blank) presented in pseudorandom order to ensure that the same stimulus type did not

appear in adjacent blocks, thus minimizing adaptation effects. A white fixation point

remained at the screen center throughout the stimulus blocks. Participants were instructed to

maintain fixation during the task and performed an irrelevant target detection task during the

M and P stimulus blocks to ensure they do so. The target, a bidimensional Gaussian contrast

reduction patch, varied in size based on its distance from the fixation point and appeared

randomly for 300 ms and in random positions 50% of the time during the second half of each

stimulus block. At the end of each stimulus block, the screen turned gray, prompting

participants to respond to questions regarding target appearance by pressing corresponding

buttons on the response pad (i.e., right button for "Yes" and left button for "No"). Participants
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had 4 seconds to provide their responses, with a 2-second inter-stimulus waiting period

between stimulus blocks.

Figure 4.1 illustrates P-stimulus

Figure 4.2 illustrates M-stimulus

4.3.2 Coherent Motion Sensitivity Detection
Sensitivity to motion coherence, with specific focus on radial motion (expanding or

contracting) was performed. The stimuli consisted of 50 small white and 50 small black dots,

displayed for 250 ms on a gray background. A subset of dots moved coherently at a speed of

10 degrees per second, while the remaining dots appeared randomly. Employed were three

levels of coherent motion (CML: Coherent Motion Level) 6%, 15%, and 40%. At the onset of

each stimulation block, a white fixation point appeared at the screen center for 0.5 s, followed

by the 0.25 s coherent motion stimulus. Participants were instructed to maintain fixation

throughout the task and were actively engaged in a motion detection task, responding by

pressing the corresponding button on a response pad (i.e., right button for expanding motion

and left button for contracting motion). After the stimulus presentation, subjects had 4

seconds to respond to the question, even if they were unable to discern the direction of

motion. A 4.25-second inter-stimulus interval was introduced between stimulus blocks. The

experimental protocol comprised 48 stimuli (with 8 repetitions for each combination of

coherence level and motion direction), presented in a pseudorandom order so that the same

coherence level could not occur in more than two consecutive blocks, regardless of the

motion direction.
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Figure 4.3 illustrates Coherent Motion stimuli

Figure 4.4 illustrates Coherent Motion fixation point and stimuli with its consequent hand response

portraying the visuo-motor nature of the task.

4.4 Image Preprocessing and Analysis
Generally, prior to the statistical analysis it is necessary to do preprocessing of the functional

magnetic imaging (fMRI) data. Preprocessing itself contains multiple steps to clean and

standardize data for further use (Esteban et al., 2019). The preprocessing of T1-weighted

structural images and fMRI data was completed via the conjoint use of well-known software

packages (e.g. SPM12 and FSL). Further general elaboration on both, structural and
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functional, preprocessing pipelines can be found in the following sections. For the purpose of

this thesis, we used the partially preprocessed data from the study of Mascheretti et al 2021.

Data acquisition, as well as the partial image preprocessing, were completed by Mascheretti

and colleagues (2021) for their study, and later were shared with for the purpose of this

project.

4.4.1 Structural preprocessing

4.4.1.1 BET Extraction

When conducting a fMRI study, primary focus is the brain tissue, which at the time of

acquisition of the original image is not the solely present. Therefore, in order to continue the

conductance of a fMRI study, it is necessary to remove all non-brain tissues, such as the

neck, bone, soft tissue, the skull, as well as the background as all of these will potentially

cause problems during further analysis. For this purpose Brain Extraction Tool (BET) can be

used as part of the FSL package (Smith, 2002).

Depending on the specific interest of the study, variety of options can be implemented into

the standard pseudo code that is generally used for BET extraction:

bet <input> <output> [options]

Among different options, most commonly used ones include:

▪ B 3 neck correction

▪ f - vertical gradient in fractional intensity threshold

▪ g - fractional intensity threshold

▪ c 3 central gravity point

Final result of the image containing only brain tissue is available for viewing and inspection

in FSLeyes (McCarthy, 2024), the FSL image viewer.
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Figure 4.5 illustrates an example image of brain extraction using FSL BET (courtesy of Gökçe Korkmaz,

2022).

4.4.1.2 Segmentation

Brain has multiple different tissue types including gray matter, white matter and

cerebrospinal fluid (CSF) (Dora et al., 2017). Segmentation is used to remove unwanted

artifacts and transform the data into standardized format. Alternatively stated, segmentation is

used to identify and classify these different tissue types, allowing us to do further analysis on

a specific brain tissue type (e.g. fMRI studies can focus solely on gray matter). Segmentation

can be done in SPM (Penny et al., 2011) Matlab (The MathWorks, Inc., 2023) or using FSL9s

FAST (FMRIB's Automated Segmentation Tool) (Zhang et al., 2001). Typically, the image

extracted using BET serves as the input image for FAST. The "-o" flag is utilized to specify

the base name for output images. Additionally, users can specify the number of segmented

tissue types when employing FSL FAST. The default number is 3 (representing White Matter,

Gray Matter, and CSF), but in cases of poor gray/white matter contrast, this can be reduced to

2. Either way, the output creates files indicating the type of matter (e.g. pve_0 for CSF,

pve_1 for gray matter, and pve_2 for white matter).

The pseudo code for FSL FAST is as follows:

fast<input> <output> -o fast_segm
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Figure 4.6 illustrates an example image of brain segmentation using FSL FAST , with red color portraying

gray matter, white color portraying Cerebrospinal fluid and blue color portraying white matter(courtesy of

Gökçe Korkmaz, 2022).

4.4.2 Functional preprocessing

4.4.2.1 MP-PCA

Marčenko-Pastur (MP-PCA) is used in order to delete the noise from the raw functional

images. Reduction of noise is necessary in the preprocessing of MR image series. Noise

corrupts MRI measurements and affects statistical analysis of functional MRI. MP-PCA

addresses this problem, which cannot be solved on the hardware side due to physical

limitations inherent in MR imaging, while improving signal-to-noise ratio (SNR) (Ades-Aron

et al., 2018).
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4.4.2.2. Slice timing

Most functional magnetic resonance image (fMRI) scans utilize echo planar imaging (EPI), a

technique which rapidly captures single or multiple 2D slices and assembles them into a 3D

volume. However, due to the inherent nature of fMRI acquisition, slices cannot be acquired

simultaneously, resulting in temporal misalignment. To address this issue, preprocessing

pipelines commonly integrate slice timing correction (STC). This step corrects for

slice-dependent delays by shifting the time series of each slice, ensuring temporal alignment

to a reference time-point (Parker & Razlighi, 2019).

4.4.2.3 Realignment

Head movement hugely affects the data, as the signal change in a particular voxel caused by

movement may result in signals originating outside the brain. To address this issue, the

procedure aims to spatially align all functional images with the initial functional image,

effectively mitigating undesired participant movement during scanning. Consequently, the

objective of this step is to ensure that all images are aligned such that the brain occupies a

consistent position across every image, ensuring that the signal from a specific voxel

consistently emanates from the same anatomical location (Zafar, et al. 2015).
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Figure 4.7 illustrates an example image of realignment (Ashburner et al., 2020)

4.4.2.4 Co-registration

With co-registration it is possible to overlay a structural (e.g. T1-weighted) with a functional

(e.g. Echo planar imaging) image. Co1registration gives a better spatial image for further use

in the normalization step (James et al., 2014). Co-registration can be performed by using

FSL9s FLIRT, and indicating the input, which refers to the image undergoing transformation,

and the reference volume, which serves as the alignment target for the input. Typically, the

input image corresponds to a functional scan, while the reference volume is a T1-weighted

anatomical image.

Figure 4.8 illustrates an example image of coregistration (Ashburner et al., 2020)

4.4.2.5 Quality Control with SPM9s CheckReg tool

CheckReg, a tool within the SPM framework, is designed to verify the coregistration of

multiple images. It assesses the alignment between a structural image and the mean of

functional images obtained via fMRI and serves as a quality control measure
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post-coregistration to confirm that images are accurately aligned and share the same

anatomical positions, minimizing significant errors or mismatches (Ashburner et al., 2020).

4.9 illustrates an example image of quality check with CheckReg tool

4.5 General Linear Model
Within the General Linear Model (GLM) framework, fMRI time series is modeled at each

voxel through a linear combination of multiple regressors, which are defined as explanatory

variables corresponding to specific experimental effects (Flandin & Penny, 2007). The

statistical analysis of fMRI data employs a mass-univariate approach based on General Linear

Models (GLMs), involving several key steps. Firstly, the GLM design matrix, fMRI data

files, and filtering are specified. Secondly, GLM parameters are estimated using classical or

Bayesian approaches. Thirdly, results are interrogated using contrast vectors to generate

Statistical Parametric Maps (SPMs) or Posterior Probability Maps (PPMs). The design matrix

defines the experimental design and hypothesis testing, with one row for each scan and one

column for each effect or explanatory variable, such as regressors or stimulus functions. In

SPM, data analysis across multiple subjects typically involves two stages: "first-level"

models for within-subject analysis and "second-level" models for population-level inferences.

At first-level each subjects9 parameters of the model are specified and estimated. Using

contrast images from each subject as summary measures of subject responses, they are

entered into the second-level model. Second-level as well encompasses model specification

and estimation (Ashburner et al., 2020).

In order to define a GLM it is necessary to define the conditions first. In our study, the

defined conditions are Coherent-15 and Magno, representing Coherence Motion Sensitivity
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task condition with 15% level of coherence which best distinguishes between the two groups

(Mascheretti et al., 2021) and Full-Field Sinusoidal Grating task magnocellular condition

which is based on Magnocellular theory of developmental dyslexia (e.g. Stein, 2019),

respectively. Following is the definition, estimation and specification of the GLM. Once the

GLM has been specified and estimated, the next step is defining a t-contrast that tests for

Coherent-15 and Magno, as well as an effects of interest F-contrast used for mean-correcting

the extracted time series. Further, it is necessary to extract one representative fMRI time

series from each brain region of interest.

4.6 Conjunction Analysis
In fMRI studies, an effect or activation typically refers to the difference in brain activity

observed between different experimental conditions, such as an activation task versus a

baseline task. When utilizing the general linear model (GLM) for fMRI data analysis, various

methods are available depending on the specific research question. Cognitive subtraction is

employed to test for a single effect, while factorial designs are utilized to examine

interactions between different experimental conditions. Conjunction analysis aims to

simultaneously test for multiple effects within one subject or for the same effect across

different subjects (Friston et al. 2019). The cognitive conjunction approach detects brain

regions that exhibit significant overall activation (the sum of all effects) without significant

differences (interactions) between individual effects, using classical test statistics (Rudert &

Lohmann, 2008). Friston & Price (1997) proposed a method for interpreting a valid

conjunction analysis within a brain map of activations, outlining the following criteria: 1)

each voxel demonstrates significant activation by two or more tasks, 2) there is no significant

modulation by interaction effects between tasks at each voxel, and 3) the estimated

relationships between each voxel and each task do not exhibit significant differences.

For our study we did a Full factorial design comparing two tasks (Coherent Motion

Sensitivity task and Full Field Sinusoidal Gratings task) over two groups (typical reader

group and developmental dyslexia group) (Figure 4.10 and Figure 4.11).
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Figure 4.10 illustrates the conjunction analysis glass brain and matrix.

Figure 4.11 Illustrates the conjunction analysis statistics table

4.7 VOI Extraction
Many functional MRI analyses, including DCM, start with extracting representative

timeseries from selected brain regions. These are called Volumes of Interest (VOIs) or

Regions of Interest (ROIs). By previously doing the conjunction analysis, deciding on VOIs

was based on the overlapping activation from the two tasks performed, as well as the

theoretical background. The regions investigated for each subject include right Medial

Frontal Gyrus (MFG_R), left Medial Frontal Gyrus (MFG_L), right V5 (V5_R), left V5

(V5_L), right Crus I (CRUS I_R), left Crus I (CRUS I_L), bilateral V1 (V1_B).
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Starting from conjunction analysis, we used three different brain atlases Harvard-Oxford

cortical and subcortical structural atlas (Desikan et al., 2006; Frazier et al., 2005; Goldstein et

al., 2007; Makris et al.,2006), Probabilistic cerebellar atlas (Diedrichsen et al., 2009) and

Julich-Brain Cytoarchitectonic Atlas (Amunts et al., 2020). We restricted the atlas mask with

the group level activation (p<0.005). During this procedure, it is essential to define the

geometry, dimensions, and thresholds of the contrast for each relevant Region of Interest

(ROI). Table 1 presents this information along with the coordinates of the ROIs at the group

level. The outcome of group-level VOI extraction is the generation of group-level mask

images in NIfTI format and VOI.mat files, which include details about the extracted masks.

An example of an extracted time series for one VOI is shown in Figure 4.13. We did further

restriction with subject specific time series extraction (p<0.05). During the VOI extraction for

subject specific activation in the Full-field sinusoidal grating task, we encountered challenges

likely due to the incompatible nature of the task causing "empty" voxels with no activation

within the ROIs for most participants. Consequently, we decided to proceed only with the

Coherent Motion Sensitivity task. Additionally, four subjects (S11, S18, S30, S37), two

subjects from TR and two from DD group, faced similar issues and were therefore excluded

from the study.

The theoretical rationale for selected brain regions is based on involvement of Ventral

Attention Network (Vossel et al., 2013) and Magnocellular pathway (Stein,2019) in

developmental dyslexia, as well as Cerebellar Deficit Hypothesis of developmental dyslexia

(Stoodley & Stein, 2013).
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Figure 4.12 VOI extraction. On the left is a VOI extraction rationale. Red portrays Atlas mask. Yellow

portrays restriction from group level activation and Purple portrays further restriction with subject level

activation. On the right is a Middle Frontal Gyrus VOI extraction of a random subject
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Figure 4.13 illustrates extracted time series from right Crus I

Region Geometry Coordinates Threshold

MFG_R Sphere, 15mm [45.71 10.99 30.99] 0.005 Uncorrected

MFG_L Sphere, 15mm [-44.03 4.81 35.87] 0.005 Uncorrected

V5_R Sphere, 15mm [44.87 -66.83 3.492] 0.005 Uncorrected

V5_L Sphere, 15mm [-41.17 -74.15 4.95] 0.005 Uncorrected

CRUSI_R Sphere, 10mm [25.67 -75.48 -19.94] 0.005 Uncorrected

CRUSI_L Sphere, 10mm [-25.68 -72.01 -20.32] 0.005 Uncorrected

V1_BIL Box, [50 50 50]mm [6.99 -78.34 4.51] 0.005 Uncorrected
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Table 1 Geometry selection of each ROI. MFG_R - right middle frontal gyrus, MFG_L - left middle frontal

gyrus, V5_R - right middle temporal region, V5_L - left middle temporal region, CRUSI_R - right crus I of

the cerebellum, CRUSI_L - left crus I of the cerebellum, V1_BIL - bilateral primary visual cortex.

Figure 4.14 illustrates VOI extraction pipeline

4.8 Hypothesis testing
This study is exploring Dynamic Causal Modeling (DCM) analysis on fMRI data to assess

effective connectivity differences in developmental dyslexia. For both developmental

dyslexia and typical reader groups the same nodes of the interested brain regions, as well as

among different models were used. Regions are: : MFG_R, MFG_L, V5_R, V5_L, CRUS

I_R, CRUS I_L, V1_B.

Following the decision on the regions, it is important to establish the driving input, where the

signal enters the system. The tasks used are attention tasks, which participants visually

observed, therefore Primary Visual Cortex (V1) was selected.

Next, two different models were constructed: fully connected one and a reduced model based

on the structural connectivity information between the cerebellum and the cerebrum (Palesi et

al., 2015; Jobson et al., 2022). Fully connected model refers to a model where all possible

connections between the regions of interest (ROIs) are included. This means that every region

can potentially influence every other region, both directly and indirectly. Moreover, it does
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not include any priors and connects all the regions between each other. Considering that in

this case the number of connections is extremely large, it could be more sensible to introduce

the reduced model to avoid possible overfitting, which consists only of the hypothesis driven

connections.

As previously mentioned, we also introduced a structurally-informed reduced model, titled

Cross Brain model, based on the structural connectivity to see the structurally informed

effects in developmental dyslexia and typical reader groups. Based on the literature (e.g.

Karavasilis et al., 2019; Pieterman et al., 2016) , the pruned connections were the ipsilateral

connections from Cerebellum to Cerebrum and vice versa, as well as the connections between

two cerebellar hemispheres. All the analyses described above were implemented with

SPM12- MATLAB2023a. Models are illustrated in figures 4.15 and 4.16.

DCM can also be used to measure self-connectivity, which is also referred to in the literature

as intrinsic or endogenous connectivity. This type of connectivity is technically defined as

intra-regional connections within a given volume of interest (Friston et al., 2003). Intrinsic

connections solely exert an inhibitory (negative) influence on each region included in the

model. In addition, they regulate the excitatory and inhibitory extrinsic (between-region)

connections that the model may estimate (Snyder et al., 2021).
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Figure 4.15 illustrates a Fully Connected model in which all the nodes are connected with each other

(created in BioRender.com).

Figure 4.16 illustrates a reduced model titled Cross Brain model based on the structural connectivity. Pruned

connections are between ipsilateral cerebellum and cerebrum as well as between the two cerebellar

hemispheres (created in BioRender.com).

Hypothesis was tested and defined:

H: There is a difference in effective connectivity dynamics between typical readers and

developmental dyslexia groups in both Fully Connected and structurally informed Cross

Brain Models (Figure 4.17)
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Figure 4.17 illustrates the hypothesis by comparing two groups in both models. The groups are

differentiated by the color of the connections with black representing typical readers group and pink

developmental dyslexia group.

4.9 Statistical Analysis
Following an estimation of each model on all subjects, both models were analyzed with

Bayesian Model Averaging using a Matlab function <spm_dcm_bma> on all subjects. Results

show posterior probability for each parameter of all subjects by averaging subject specific

parameters. By averaging over all subjects, we obtain a comprehensive view of the parameter

distributions, which reflects the variability and commonalities within the population. The

same BMA analysis was repeated for both models to ensure that the results were not specific

to one particular model but were robust across different theoretical frameworks. This is

crucial as it validates the consistency of the findings and helps in confirming the reliability of

the observed patterns.
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5. Results
Implementing the pipeline described in the Methods chapter, following results are reported.

5.1 Conjunction analysis
Our conjunction contrast focused on the brain regions with higher activation associated with

developmental dyslexia subjects' activation on both tasks versus corresponding healthy

controls. Statistical significance was set at p < 0.05 without family-wise error (FWE)

correction in all tests during group analysis. Overlaying the brain activity from both Coherent

Motion Sensitivity task and Full-Field Sinusoidal Grating task, presented the brain activity

that is consistent between tasks. The overlaying activity is present in multiple regions

including right Medial Frontal Gyrus (MFG_R), left Medial Frontal Gyrus (MFG_L), right

V5 (V5_R), left V5 (V5_L), right Crus I (CRUS I_R), left Crus I (CRUS I_L), bilateral V1

(V1_B). Figures 5.1, 5.2, 5.3 and 5.4 represent the glass brain and slice view with different

axes images with brain activity consistent in both tasks.

Figure 5.1 illustrates sagittal, transverse and coronal glass brain images from conjunction analysis

overlaying Coherent Motion Sensitivity task and Full-Field Sinusoidal Grating task brain activities

(generated by xjView 10.0.)
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Figure 5.2 illustration of sagittal slice brain view from conjunction analysis overlaying Coherent Motion

Sensitivity task and Full-Field Sinusoidal Grating task brain activities (generated by xjView 10.0.)

68



Figure 5.3 illustration of transverse slice brain view from conjunction analysis overlaying Coherent Motion

Sensitivity task and Full-Field Sinusoidal Grating task brain activities (generated by xjView 10.0.)

S_L

69



Figure 5.4 illustration of coronal slice brain view from conjunction analysis overlaying Coherent Motion

Sensitivity task and Full-Field Sinusoidal Grating task brain activities (generated by xjView 10.0.)

Based on the conjunction analysis as well as previous literature review, the brain regions

decided for VOI extraction include: : MFG_R, MFG_L, V5_R, V5_L, CRUS I_R, CRUS

I_L, V1_B. VOI selection is illustrated below in the Figure 5.5.
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Figure 5.5 illustrates the conjunction analysis brain activity and chosen regions. Green represents Middle

Frontal gyrus; purple represents V5; light blue represents Crus I; dark blue represents bilateral V1.

5.2 DCM subject level analysis
Standard pipeline for a subject level analysis, encompassing DCM Specification, DCM

Estimation and DCM Diagnosis was performed on all subjects, demonstrated here with a

randomly chosen subject. Region locations are shown in Figure 5.6. Results of estimation are

represented in Figure 5.7. Additionally, multiple different results can be reviewed at this point

including Intrinsic Connectivity (Figure 5.8) and Output (5.9). Finally, diagnostic results are

represented in Figure 5.10.
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Figure 5.6 illustrates region locations of both groups with green and dark blue representing MFG left and

right respectively, light blue and red representing V5 left and right respectively, yellow and purple

representing Crus I left and right respectively and black representing bilateral V1. At the bottom is a table

representing region name, number of voxels and location of the region.

Figure 5.7 Estimation for a random subject Fully Connected Model (left) and Cross Brain Model (right)
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Figure 5.8 illustrates random subject parameter estimates for the endogenous coupling for Fully Connected

Model (left) and Cross Brain Model (right)

Figure 5.9. illustrates random subject outputs for Fully Connected Model (left) and Cross Brain Model

(right). Output signal (Hz) for predicted (blue line) and observed response (red dots) of each ROIs in time

(seconds).

Further, DCM Diagnostic was performed in Matlab (MathWorks Inc., 2023) using

<spm_dcm_fmri_check(GCM)>, in order to gather more information on the estimated model.

Figure 5.10 represents the diagnostic check for TR and DD groups respectively. On both

figures present is a model of the selected subject, where bold lines are the predicted

timeseries of regions, dotted lines are the data.
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Figure 5.10 Diagnostic for TR group (left) and DD group (right)

5.3 Bayesian Model Averaging
Hypothesis for testing the differences in effective connectivity dynamics between typical

readers and developmental dyslexia in both Fully Connected and structurally informed Cross

Brain Models created. The BMA results of the typical reader (TR) group and Developmental

Dyslexia (DD) group in the Fully Connected model, as well as in the Cross Brain model were

compared with the resulting matrices show the connectivity changes between groups,

illustrated in the Figure 5.11 and 5.12. Effective connectivity strength represented in Hz with

positive (red) values for excitatory connections and negative (blue) values for inhibitory

connections. White values correspond to extrinsic connections not included in the model.

Self-connectivity (diagonal) cannot be null by definition (see Methods) and it shows a

remarkable intrinsic activity of all the regions involved (Figure 5.11 and Figure 5.12). The

strongest excitatory connections are from V1_B to MFG_R, CRUS I_R and CRUS I_L in TR

for both models. In DD group the strongest excitatory connections for both models are from

V5_R to CRUS I_L; from CRUS I_R to V5_L and B1_B; from CRUS I_L to V5_R.

Additionally, for DD group only in the Fully Connected model excitatory connection can be

seen from CRUS I_R to V5_R and CRUS I_L. Connections that present a different

connectivity strength in two groups are highlighted with a *, and with a triangle ( )∆
highlighted is the connectivity inversion (from excitatory to inhibitory connectivity change

between groups).
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Figure 5.11 illustrates BMA results in typical readers (left) and developmental dyslexia (right) for the Fully
Connected Model. Connectivity differences between two groups are represented with a star (*).

Figure 5.12 illustrates BMA results in typical readers (left) and developmental dyslexia (right) for the Cross

Brain Model. Connectivity differences between two groups are represented with a star (*).
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6. Discussion
The present study examined effective connectivity in developmental dyslexia (DD) and

typical readers (TR) using Dynamic Causal Modeling (DCM) with a focus on seven regions

of interest: the left and right middle frontal gyri, left and right middle temporal visual area

(V5), left and right Crus I of the cerebellum, and bilateral primary visual cortex (V1). The

specific nodes involved are consistent with the literature that highlights the multifaceted

nature of developmental dyslexia, encompassing visual, cognitive, and motor components.

The left medial frontal gyrus, for example, is part of the Ventral Attention Network, often

affected in developmental dyslexia (Vossel et al., 2013). Similarly, V5, part of the

magnocellular pathway, is associated with motion detection and visual processing, areas

where dyslexic individuals may exhibit deficits (Stein, 2019). The cerebellum9s role in motor

control and reading, and its involvement in developmental dyslexia based on the Cerebellar

Deficit Theory warranted its place among the decided nodes (Stoodley & Stein, 2013).

We proposed a hypothesis that states:

H: there is a difference in effective connectivity between typical readers and developmental

dyslexia groups in both Fully Connected and structurally informed Cross Brain Models

constructed based on the structural connectivity information for the cerebellum and

cerebrum.

The Fully Connected Model takes into account all possible direct connections between brain

regions. In contrast, the Cross Brain Model incorporates structural connectivity information

into the functional DCM analysis. This approach utilizes anatomical data to inform and

constrain the functional connectivity models in DCM, in order to create more biologically

plausible and accurate representations of brain connectivity by integrating knowledge of the

underlying anatomical pathways. Moreover, our findings support the hypothesis, indicating

significant differences in effective connectivity between typical readers and individuals with

developmental dyslexia in both Fully Connected and structurally informed Cross Brain

Models. The differential connectivity patterns observed may reflect the neurobiological

underpinnings of the difficulties typically experienced by individuals with dyslexia.

In the Fully Connected Model, majority of the connectivity changes were hyperactivations in

DD group, consistent with a study done by Morken et al. (2014), to and from cerebellar

regions right Crus I and left Crus I both ipsi- and contralaterally with cerebral regions,
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indicating possible need for increased effort by those with dyslexia. Notably, connectivity

inversion (i.e., change from excitatory to inhibitory connection) occurred from bilateral V1 to

left V5 between TR and DD possibly explaining the disruptions in visual processing

pathways that may contribute to the reading difficulties in DD. On the contrary, in the Cross

Brain Model, no inversions were present which suggests stable and predictable directional

interactions between the cerebrum and cerebellum based on structural connectivity, while the

majority of difference in connectivity was between cerebral regions, once more showing

hyperactivity in DD group consistent with the literature (Morken et al. 2014). The

cerebro-cerebellar connectivity differences that did occur were mostly from cerebellar

regions to the contralateral cerebral regions. These results align with Deco et al. (2021) who

delve into the dynamic implications stemming from regional heterogeneity in the brain. Their

analysis posits that variations in gene expression profiles across distinct brain regions

intricately influence inter-regional interactions and communication pathways, which could

underlie the observed patterns of cerebro-cerebellar connectivity in dyslexia. Specifically,

perturbations in gene expression within key brain regions associated with developmental

dyslexia may disrupt normal cerebro-cerebellar interactions, thereby impacting critical

cognitive functions such as reading and language processing. Both models indicated a major

connectivity difference in the form of hypoactivity in DD from the main input region bilateral

V1 to MFG_R, V5_R, CRUS I_R, CRUS I_L. Hypoactivity in Ventral Visual Stream has

been consistently found in dyslexia (Sigurdardottir et al., 2021). Additionally, the Fully

Connected Model showed major connectivity changes from all the other regions, excluding

MFG_R and MFG_L as well as V1_B itself, to bilateral V1.

Our study contributes to the neuroscientific literature by employing Dynamic Causal

Modeling (DCM) to investigate differences in causal, directional interactions and

symmetry-breaking dynamics within brain networks between those with dyslexia and typical

readers during attention tasks. Unlike traditional assessments of structural and functional

connectivity, DCM allows us to discern how specific neural regions causally influence one

another over time, thus offering a more nuanced understanding of cognitive functions.

Furthermore, Battaglia et al. (2012) highlight the importance of dynamic changes in

connectivity rather than static connections, additionally illustrating the complex nature of

effective connectivity, where interactions between brain regions evolve dynamically based on

task demands and cognitive processes. Integrating these perspectives enhances our

understanding of how directional causal interactions and symmetry-breaking dynamics in
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brain connectivity contribute to the cognitive differences observed between those with

dyslexia and typical readers.

Implications

This study contributes to a broader understanding of how the brain supports complex

cognitive functions. The findings emphasize the need for models of brain connectivity that

integrate structural and functional data, acknowledging that effective connectivity can often

diverge from the direct anatomical pathways due to the dynamic and adaptive nature of

neural processing.

These findings have several important implications for understanding developmental

dyslexia. Firstly, our findings prove the importance of taking into account both functional and

structural connectivity in understanding the neural mechanisms underlying dyslexia. While

structural connectivity provides a map of potential connections, functional and effective

connectivity analyses reveal how these connections are utilized during specific tasks

(Rykhlevskaia et al., 2008). Integrating causality assessments in the context of

cerebro-cerebellar interactions not only enhances our comprehension of neural network

dynamics but also illuminates potential mechanisms underlying dyslexia at the level of brain

circuitry (Bukhari et al., 2022). Therefore, the differences in effective connectivity patterns

between typical readers and dyslexic individuals highlight potential targets for interventions.

Additionally, understanding these connectivity patterns could help in the early identification

of children at risk for dyslexia, as different connectivity patterns might be used as a neuronal

marker of DD, allowing for earlier and more targeted intervention strategies.

Future studies could explore alternative modeling approaches or incorporate additional data

types in order to refine the understanding of the interaction between structural and functional

connectivity. Additionally, longitudinal studies could investigate how connectivity patterns

evolve with interventions designed to improve reading and attention skills in individuals with

dyslexia, potentially offering insights into the plasticity of the brain. Further research can also

expand to include other neurodevelopmental disorders that affect reading, attention and

language processing. By comparing connectivity patterns across different conditions, we can

begin to identify similarities and differences that might inform more general theories of brain

development and function. Lastly, associating the results with clinical scores of TR and DD

the original study by Mascheretti and colleagues (2021) has conducted and provided would
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allow for improvement in identification and diagnosing of developmental dyslexia, and

should therefore be considered as a future direction.

Limitations

While this study provides valuable insights into the effective connectivity differences

between typical readers and developmental dyslexia groups, several limitations should be

acknowledged.

1. Exclusion of the Full-Field Sinusoidal Grating Task: The decision to exclude the Full-Field

Sinusoidal Grating task after the conjunction analysis represents a limitation. This exclusion

was primarily due to the insufficiently captured brain activity with the passive nature of the

task and therefore its incompatibility with DCM methodology.

2. Decreased Participant Pool: Another limitation stems from the decreased number of

participants involved in the study. This reduction was partially due to the exclusion of

participants exhibiting minimal brain activity during the tasks. Additionally, the original

sample size consisted of 90 participants, however the decision to match the participant

demographics with Mascheretti et al. (2021), as well as the correct genetic variant incidence

in the general population, led to a further decrease in the sample size. While this approach

aims to enhance comparability and facilitate cross-study analyses, it inherently limits the

statistical power of our findings and may introduce biases into the results.

3. Generalizability of Findings: The findings of this study may not be fully generalizable to

broader populations beyond the specific age range, demographics, and task paradigms

employed. The sample primarily consisted of individuals from a specific geographical region,

potentially limiting the generalizability of our findings to more diverse populations.

Moreover, the task paradigms utilized may not fully capture the complexity of developmental

dyslexia in real-world contexts.

4. Cross-sectional Design: The cross-sectional design of this study represents another

limitation. While it provides valuable insights into the differences in effective connectivity

between typical readers and developmental dyslexia groups at a specific time point, it

precludes the assessment of longitudinal changes or causal relationships over time. Future

longitudinal studies are needed to explain the developmental trajectories of effective

connectivity alterations in developmental dyslexia and the potential impact of interventions

on these patterns.
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5. DCM Constraints: One significant limitation of using Dynamic Causal Modeling (DCM),

as highlighted by Lohmann et al. (2012), is the practical constraint on the maximum number

of nodes that can be included in the model. DCM is computationally intensive, and as the

number of nodes increases, the model's complexity grows exponentially. This constraint

restricts the ability to fully capture the intricacies of large-scale brain networks, potentially

resulting in oversimplified models. Additionally, DCM can be highly sensitive to the chosen

model structure, and with many possible configurations, determining the most accurate model

that truly represents the underlying neural processes can be challenging. This issue can lead

to difficulties in validating the findings and ensuring that the inferred connectivity patterns

are genuine reflections of brain connectivity rather than artifacts of the model selection

process.

Addressing these limitations in future research will be essential to further explain the neural

mechanisms underlying developmental dyslexia and advance our ability to develop targeted

interventions tailored to individual neurobiological profiles.
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6. Conclusion
In summary, this study provides evidence for altered effective connectivity in developmental

dyslexia compared to typical readers in the full connectivity dynamics and structurally

informed model of the cerebrum and the cerebellum. The findings emphasize the complexity

of the neuronal networks involved in attention and the importance of considering both

structural and functional aspects of connectivity. These insights contribute to a deeper

understanding of the neurobiological basis of developmental dyslexia and highlight the need

for further research to integrate these dimensions comprehensively.

The confirmation of our hypothesis provides a solid foundation for future investigations into

the neural mechanisms of developmental dyslexia. By continuing to refine our models and

incorporate a broader range of data, we can move closer to a comprehensive understanding of

how the brain supports cognitive processes and how these processes go awry in

developmental dyslexia. This knowledge will be crucial for developing more effective

diagnostic tools and interventions, ultimately improving outcomes for individuals with

dyslexia.
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Appendix

Table 2 illustrates the participants' clinical scores conducted and provided by Mascheretti et al. 2021. Tr -

text reading; Swr- single word reading; Spwr- single pseudo word; Slfs- single letter forward pan; Slbs -

backwards; Sdfs - single digit forward; Sdbs - backward; Snwr - single non word repetition
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