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Abstract 

 

This study explores human-XAI (Explainable Artificial Intelligence) collaboration in the medical 

setting, focusing on clinicians’ perceptions and preferences. Ten clinicians from I.R.C.C.S. 

Policlinico San Matteo Foundation of Pavia, Italy, participated in the survey, and two of them took 

part in the think-aloud session. The aim of the study is to assess and compare clinicians’ 

perceptions of three tools: an explainable-by-design Bayesian network and two local XAI methods 

– Shapley values (Shap) and Araucana tree. The explanations were designed as the extension of 

the ALFABETO project, classifying COVID-19 patients for either discharge or hospitalization. 

Perceptions were assessed on usability dimensions: self-reported helpfulness, comprehensibility, 

and cognitive load. Sentiment analysis was also used to gauge emotional tone. 

Results show clinicians generally trusted XAI explanations, with high compliance rates of 86%, 

though only 50% of predicted cases showed correct classification, indicating potential over-

reliance. Compliance correlated with experience and survey completion time. Shap was perceived 

as the most comprehensible, helpful, and requiring the least cognitive effort due to its additive 

nature. Araucana required higher cognitive load and had slightly lower scores mirroring its higher 

complexity. The Bayesian network was neither comprehensive nor helpful, requiring too much 

cognitive effort. Sentiment analysis mirrored survey results, but more data is needed for conclusive 

findings. 

Significant differences in tool preferences were found between ER (Emergency room) and ID 

(Infectious diseases) departments, with ID clinicians preferring Shap and ER clinicians preferring 

both Shap and Araucana. The study highlights the need for theoretical and empirical studies run 

together, by fitting results into a four-dimensional explainability framework. Overall, fine-tuning 

cognitive load and usability based on specific user needs makes Shap and Araucana strong 

candidates for effective human-XAI collaboration in healthcare. 

Key words: Explainable AI (XAI), Human-XAI collaboration, Medical decision-making, 

Usability, Shapley values, Araucana Tree, Bayesian network. 



Introduction 

 

The integration of Artificial Intelligence (AI) in healthcare can revolutionize medical decision-

making by providing advanced tools for diagnosis, treatment planning and lowering costs (Hudda 

et al., 2024). AI can analyse vast amounts of medical data quickly and accurately, identifying 

patterns and insights that might be missed by human practitioners. This can lead to more accurate 

decisions and treatments resulting in improved patient outcomes.  

Artificial Intelligence is a branch of computer science that focuses on creating systems that can 

perform tasks traditionally thought of as requiring human intelligence. These tasks include learning 

from data, pattern recognition, making decisions and understanding natural language. The key of 

AI algorithms is their ability to learn from experience and adapt to new inputs. In consequence 

they are able to perform many human-like tasks previously thought of as impossible to achieve for 

a machine. 

AI applications in healthcare encompass medical imaging analysis, predictive analytics, natural 

language processing, personalized treatment plans and the automation of administrative tasks 

(Hudda et al., 2024; Talati, 2023). AI is particularly beneficial in fields such as radiology, 

cardiology and ophthalmology (Anwar & Khan, 2023). It offers significant advantages over 

traditional analytics and clinical decision-making tools. However, to fully realize its potential, 

issues related to transparency, data privacy, ethical considerations, and regulatory frameworks 

must be addressed. 

The global awareness of this technological change is growing. The legislators and various global 

organizations are highlighting the great potential but also multiple risks of AI in healthcare. The 

concerns raised are mainly due to the fact that, unlike many other domains, healthcare is considered 

a high-stake decision making environment (Zytek et al., 2021). Therefore, ensuring that all 

decisions are made as best as they can is of the highest importance. Many experts highlight the 

need for making the systems transparent and safe. However, few practical solutions have been 

suggested openly. 

Unfortunately, great performance of AI algorithms is compromised with intractability of those 

systems. This lack of traceability, commonly known as the “black box” problem, means that while 



AI can deliver highly accurate results, it is difficult to discern how these results were achieved. 

This opacity can lead to issues with trust, accountability, and biases, as users and stakeholders 

struggle to understand and verify the AI’s decisions. Efforts to address this include developing 

explainable AI (XAI) techniques, which aim to make AI systems more interpretable and their 

decisions more transparent. 

Explainability is recognized as a key ethical principles for trustworthy AI (European Comission, 

2019; European Comission (ALTAI), 2020), addressing need for human agency and oversight, 

transparency, accountability as well as fairness. However, the precise relationship between XAI 

and these principles remains unclear, making it challenging to fully evaluate XAI’s overall impact 

on the development of trustworthy AI systems. Many global leaders highlight the need for 

transparency and appropriate validation of the systems. For example WHO Director-General Dr 

Tedros Adhanom Ghebreyesus highlighted that ‘Artificial intelligence holds great promise for 

healthcare, but also comes with serious challenges, including unethical data collection, 

cybersecurity threats and amplifying biases or misinformation’ (World Health Organization, 

2023). However, the means to ensure how those challenges should be addressed are not mentioned. 

The Future of Health (FOH), an international organization of senior health leaders highlights the 

need for making AI in healthcare trustworthy as one of top priorities (Silcox et al., 2024). However, 

they do not suggest or quote practical measures with exception of the articles that focus on 

prevention of racial or subgroup biases (Introducing HealthAI, 2023; Shah et al., 2024; Trevan et 

al., 2022). These kinds of biases are of great importance but they are not the core issue as they are 

not the cause but one of many consequences of lack of transparency. In those reports the ‘black-

box nature’ of AI is usually not explained which suggests that the transparency might be 

considered as something that can be achieved if sufficient time and resources are invested in the 

creation of the system. It is a misconception as even small AI systems inherently lack transparency 

(Lipton, 2017).  

Currently XAI techniques are considered to have great potential to combat ‘the black-box’ nature 

of AI. However, they can serve as only a proxy for transparency. To date there is no technique on 

the horizon that would have any chance at fully combating intractability of AI algorithms (Yang 

et al., 2023). Therefore, the awareness of the limitations of AI systems and XAI is not developed 

yet. Fortunately, the growing literature and studies on transparency can raise the awareness, 



estimate the potential and limitations of XAI and provide practical solutions to aforementioned 

concerns. 

Although AI technology is making significant strides and revolutionizing various aspects of 

healthcare, it is improbable that doctors will be replaced by AI. The future of healthcare is more 

likely to involve a collaborative effort between AI and medical professionals. AI can support 

doctors by swiftly analysing large datasets, offering diagnostic recommendations, and predicting 

patient outcomes. However, the human touch, empathy, and deep understanding that doctors 

provide are irreplaceable (European Comission, 2019; Holzinger et al., 2019; Longo et al., 2020; 

Schneeberger et al., 2023). This partnership will allow doctors to concentrate more on patient 

interactions and complex decisions, while AI can manage data-driven tasks, resulting in a more 

effective and compassionate healthcare system. 

Human-AI and human-XAI interaction or collaboration encompasses specifically the ways in 

which humans communicate and collaborate with AI and XAI systems. This field prioritizes the 

development of AI systems that are user-friendly, transparent, and fair, ensuring that they augment 

human abilities rather than replace them. The objective is to create tools that not only perform 

tasks as instructed but also are adapted to the users and evolve alongside them, while maintaining 

safety, ethical standards, and privacy. Ultimately, the goal is to foster a seamless partnership where 

support systems enhance human capabilities (Reverberi et al., 2022). 

The present will work investigate the collaboration of the doctors with XAI in a user-centred study. 

Through a questionnaire-based survey, we collect clinicians’ perception of three different types of 

XAI methods and evaluate the benefits and drawbacks of each method. This study’s originality 

lies in its holistic evaluation of clinicians’ perceptions of different XAI tools in a medical setting, 

a relatively underexplored area in recent literature (Gupta & Seeja, 2024; Manresa-Yee et al., 

2022). By comparing an explainable-by-design Bayesian network with local XAI methods like 

Shap and Araucana tree, it provides nuanced insights into usability and cognitive load, aligning 

with recent findings on the importance of user-friendly explanations in healthcare. The integration 

of sentiment analysis to gauge emotional tone adds a novel dimension to understanding clinicians’ 

interactions with XAI, echoing the call for more human-centred approaches and user experience 

considerations in XAI research (Liao & Varshney, 2022). Additionally, the study’s focus on 

specific departmental preferences highlights the need for tailored XAI solutions, contributing to 



the growing body of work advocating for context-specific explainability in medical AI. It is crucial 

as XAI techniques have been developed primarily to serve model developers and AI researchers, 

not end users (Liao & Varshney, 2022). 

 

Background 

Technology and leveraging algorithmic data processing has been used for supporting human 

decision  making since 1960s, around 30 years after the development of first digital computers in 

1940s (Ferguson & Jones, 1969). First implementations and tests in the healthcare context are 

dated to 1970s (Chen et al., 2023). It means these types of systems have been around for only 50 

years since the initial idea. These systems are usually called Decision Support Systems (DSSs). 

They are designed to assist in the decision-making process by analysing large volumes of data and 

presenting actionable insights. A DSS acts like as an intelligent guide, processing all available 

information to show possible solutions. They integrate data, analytical models, and user-friendly 

interfaces to help decision-makers evaluate different scenarios and predict outcomes with greater 

accuracy (Leong, 2003). DSS can enhance the quality and efficiency of decisions, ultimately 

leading to better healthcare functioning both for the patients and for the medical staff. However, 

since the initial idea has been introduced, the success at least in the domain of healthcare has been 

limited. The digitalisation and introduction of the electronic health records (EHRs) largely 

improved healthcare systems but not as the direct decision-making aid. The capabilities of DSSs 

were limited to risk assessment and simple medical decision-making cases, not creating a 

significant impact (Abell et al., 2023). Only the increase in processing speed and ability to handle 

high volumes of data and using more advanced statistical tools created a possibility of creating a 

significant impact in individual decision-making cases in healthcare. Nevertheless, more advanced 

systems had led to another problem, i.e., the lack of transparency undermining trust in the DSS 

(Jones et al., 2021). 

Traditional DSS are tractable: they rely on clear logical rules and the decision process can be traced 

directly from the input data to the final output. On the other hand, the new generation of support 

systems relying on AI operates on what is usually called a ‘black-box’ reasoning. There is no clear 

and certain way of seeing why particular input results in a specific output of the system. This in 



turn has led to yet another field which tries to trace back and explain why a particular decision has 

been taken: Explainable AI (XAI). 

In 2004, Van Lent and colleagues introduced the term XAI to describe systems capable of 

explaining the actions of AI-controlled entities (van Lent et al., 2004). XAI is crucial in the medical 

field because it addresses the ‘black-box’ problem, where AI systems make high-stakes decisions 

without providing reasoning behind it (Zytek et al., 2021). In healthcare, where decisions can have 

significant consequences, it is essential for clinicians to understand and trust the AI tools they use. 

XAI can enhance clinician confidence, improve patient outcomes, and ensure ethical standards are 

maintained by providing insights into how AI systems arrive at their conclusions, ultimately 

fostering better human-AI collaboration. 

 

Medical decision making and cognitive processes 

Clinical reasoning is essential for evaluating a patient’s condition and making medical decisions, 

enabling doctors to administer appropriate treatments. Effective clinical reasoning relies on three 

key areas of knowledge: diagnostic, etiological, and treatment knowledge (Elstein & Schwarz, 

2002). Moreover, additional factors such as years of experience, both individually and within a 

department, significantly enhance clinical reasoning by improving all three aforementioned key 

areas (Dobber et al., 2023). Experienced clinicians can quickly recognize patterns and generate 

accurate hypotheses, while experienced departments benefit from collaborative knowledge and 

refined protocols. This collective expertise helps mitigate cognitive biases, ensuring more accurate 

and effective medical decisions (Dobber et al., 2023). 

The interplay of knowledge and the reasoning processes in medical decision-making can be 

understood through multiple frameworks. Researchers distinguish different types of clinical 

reasoning a simple example being deductive and inductive reasoning (Shin, 2019). Clinical 

reasoning can be also understood and studied by considering more abstract multiple decision-

making streams as well as their consequences and pitfalls. 

Here one of the most influential and relevant frameworks in the context of decision-making will 

be reviewed, i.e., the dual-process theory. Interestingly, this theory can be applied in three different 



ways: to analyse the reasoning of doctors on their own, the decision-making of the AI-DSSs as 

parallel to human cognition, and the joint (clinician and AI-DSS) decision-making process. Below, 

the first - the decision-making of doctors – the traditional application of the theory will be 

summarised followed by the interpretation of joint decision-making of the clinician and AI-DSS. 

The dual-process theory, described by Kahneman and Tversky, proposes two distinct cognitive 

systems that influence human decision-making. System 1 is fast, intuitive, and emotional - it is a 

parallel to the inductive reasoning, whereas System 2, which is slower, more deliberative, and 

more logical is more aligned with deductive reasoning (Kahneman, 2011). The clinician’s intuitive 

expertise (System 1) rapidly assesses a situation based on learned patterns and experiences, while 

System 2 provides a deliberative analysis and logical explanations why a certain decision should 

be taken. According to Kahneman's theory, these systems interact and can sometimes conflict, 

explaining in simple terms many pitfalls in the clinical decision-making process.  

System 1 is typically relied upon when decisions need to be made quickly, based on pattern 

recognition and heuristics (decision-making proxies and shortcuts), which can be beneficial in 

emergency situations. However, this system is also more susceptible to cognitive biases, such as 

the availability heuristic, where clinicians may judge the probability of an event by the ease with 

which instances come to mind, potentially leading to overestimation of common conditions and 

underestimation of rare ones. System 2, on the other hand, is engaged when more complex 

decisions are required, involving data analysis and critical thinking, such as weighing the risks and 

benefits of a particular treatment plan. This system is typically engaged when a DSS is used, 

providing a structured framework for analysing clinical data and guiding choices. Yet, even with 

DSSs, biases can infiltrate the decision-making process. For instance, confirmation bias may lead 

to seeking out information that supports the preconceived notions or diagnoses, while neglecting 

data that contradicts them. Similarly, anchoring bias can cause clinicians to rely too heavily on the 

first piece of information encountered - often initial test results or patient presentation when 

making decisions. 

The interaction between these systems and DSSs can sometimes lead to suboptimal clinical 

decisions. For example, when under time pressure or cognitive overload, clinicians may default to 

System 1, despite the availability of a DSS designed to engage System 2 processes. This can result 

in diagnostic shadowing, where the presence of a salient feature (such as a patient’s known medical 



condition) overshadows the accurate interpretation of symptoms, leading to misdiagnosis or 

inappropriate treatment. Moreover, the framing effect, where the same information presented in 

different ways can lead to different decisions, can be exacerbated by the design and output of DSS, 

which may present data in a way that inadvertently influences the clinician’s judgments. 

To mitigate these biases, it is crucial for DSS to be designed with an understanding of dual-process 

theory, ensuring that they support System 2 processing without inadvertently reinforcing System 

1 biases. This includes providing balanced information presentation, prompts for critical thinking, 

and preventing strategies for common cognitive biases. Additionally, training clinicians to be 

aware of these biases and to consciously engage System 2 thinking when using DSS can further 

enhance decision-making quality. Ultimately, the dual-process theory provides a valuable 

framework for understanding the cognitive underpinnings of clinical decision-making and the 

potential pitfalls that can arise when interacting with DSSs. By acknowledging and addressing the 

interplay between intuitive and analytical thinking, healthcare providers can improve the accuracy 

and effectiveness of their decisions, leading to better patient outcomes. 

 

AI and predictive modelling in medicine 

Predictive AI in medicine involves using advanced algorithms and machine learning models to 

anticipate patient outcomes, diagnose diseases, and personalize treatment plans. There are several 

types of predictive AI models. Supervised learning involves training models on labelled data to 

predict outcomes, such as regression for continuous values and classification for discrete labels 

(Sarker, 2021). In contrast, unsupervised learning uses unlabelled data to uncover hidden patterns, 

with clustering being a common technique. Deep learning, a subset of machine learning, employs 

neural networks for complex tasks and can be used in both supervised and unsupervised learning. 

Convolutional Neural Networks (CNNs) are typically used for image recognition, while Recurrent 

Neural Networks (RNNs) handle sequential data and time series prediction (Sarker, 2021). 

These models analyse vast amounts of medical data, including electronic health records and 

imaging, to identify patterns and make predictions. However, challenges persist, including data 

quality and heterogeneity, model interpretability, and the integration of AI systems into clinical 

workflows. Ensuring the ethical use of AI and preventing cognitive biases mentioned in the 



previous chapter (Medical decision making and cognitive processes) are of utmost importance 

especially in high-risk medical decision-making (Maleki Varnosfaderani & Forouzanfar, 2024). 

Traditionally, predictive AI is viewed as an impersonal process, with algorithms operating 

autonomously on passively collected data. However, it should also be seen as a tool for achieving 

human goals. Human-centred AI acknowledges the essential role of people in the process and 

adapts workflows to fit human working practices. This approach highlights that machine learning 

systems are not just autonomous entities but are designed to be used by people to achieve specific 

objectives. By integrating human insights and contextual understanding of DSSs, the development 

and deployment of machine learning models can result in systems that are more intuitive and 

effective (Gillies et al., 2016). The design process should focus on making the tools 

comprehensible and helpful, ensuring that users can easily understand and effectively utilize the 

technology. This perspective conceptualizes computational learning, emphasizing the importance 

of usability especially in high-stakes environments like healthcare. 

Newest reports indicate that human-AI collaboration is more effective and can outperform the use 

of the AI prediction itself and the clinician working alone (Reverberi et al., 2022). Various 

protocols are being investigated at the moment (Cabitza et al., 2023). 

By focusing on human-AI collaboration, the usability of DSSs can be enhanced leading to better 

diagnostic accuracy and efficiency, early detection of diseases, reduced human error, and 

continuous improvement of care. 

 

Explainable AI 

Explainable AI (XAI) originated from the need to make complex AI models more transparent and 

understandable, especially in critical decision-making settings. Traditional AI models, often 

referred to as ‘black boxes’, usually provide no insight into how they arrive at their predictions. It 

can be problematic in medical decision-making where understanding the rationale behind a 

diagnosis or treatment recommendation is crucial for the patient and as feedback for doctors. XAI 

addresses this by offering clear, interpretable explanations of AI decisions, enhancing trust and 

accountability. The benefits of XAI in healthcare are significant: it helps clinicians understand and 



validate AI-driven insights, supports informed decision-making, and ensures compliance with 

regulatory standards. Moreover, XAI can enhance patient and doctor’s trust by providing 

transparent explanations of AI-assisted diagnoses and treatments, ultimately leading to better 

patient outcomes and safer use of AI DSSs (Longo et al., 2020).  

The recent and fast advancement of AI implementation has led to development of multiple XAI 

tools. They can be categorized in terms of the stage of applicability (ante-hoc vs post-hoc), scope 

of the explanation (global vs local) and the general model applicability of the technique (model-

specific vs model-agnostic) (Figure 1). A description of the categories is outlined below. 

 

 

Figure 1. Taxonomy of XAI. Three main categories of classification include the stage during which 

the technique is applied, scope of the explanation and applicability (Speith, 2022). 

 

Ante-hoc vs post-hoc 

Ante hoc (intrinsic) methods are designed to be inherently interpretable from the outset, meaning 

the models are built with transparency in mind. These methods provide clear and understandable 

decision paths, ensuring that the reasoning behind predictions is accessible and straightforward. 

Models such as linear regression, decision trees, k-nearest neighbours, rule-based learners, general 

additive models, and Bayesian learners are typically considered ante-hoc explainable, if they are 

not excessively large (Speith, 2022). However, these models are not suitable for all machine 

learning problems due to their lower performance. They usually do not achieve the same level of 

accuracy as opaque models like deep neural networks. This is commonly referred to as the 

performance-explainability trade-off (Speith, 2022). 



On the other hand, post hoc (black-box) methods are applied after a model has been trained. These 

methods aim to explain the decisions of complex, often opaque models like deep neural 

networks. Techniques such as LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro 

et al., 2016) and Shap (Lundberg & Lee, 2017) fall into this category, offering insights into model 

behaviour without altering the original model. Another example is rule-based decision tree - 

Araucana used in this study (Parimbelli et al., 2023). 

Both approaches are crucial for enhancing the transparency and trustworthiness of AI systems, 

particularly in high-stakes fields like healthcare. Ante-hoc methods are integrated into the model 

and inherently interpretable but are not easily transferable. Post-hoc methods are independent of 

the model architecture and can explain any trained model without affecting its accuracy. Both 

approaches bring some unique advantage to explainability (Vale et al., 2022). 

 

Local vs global 

Local explanations interpret decisions based on specific data instances, while global 

explanations provide insights into the overall model behaviour.  

Local explainability methods are believed to likely be more important to those affected by AI 

system outputs than to regulators creating AI legislation. While individuals may want to determine 

if they have experienced discriminatory decisions, regulators are focused on reducing 

discrimination overall (Langer et al., 2021). Techniques for local explainability, such as LIME and 

Shap, are vital for individuals aiming to comprehend particular AI-driven decisions, like a patient 

exploring the reasons behind a particular medical treatment chosen. One example is the use of 

Shap for assessment of the whole brain radiotherapy treatment (Wang et al., 2022). 

In contrast, healthcare regulators might employ global explainability approaches to verify that AI 

systems do not systematically discriminate against any demographic group. Some examples 

include introduction of a model that combined a binary decision tree with a clustering algorithm 

(Eiras-Franco et al., 2019). Another example is GLocalX, which is a ‘local-first’ model agnostic 

explanation method (Setzu et al., 2021). It starts with local explanations in the form of local 

decision rules and iteratively generalizes them into global explanations through hierarchical 

aggregation. This approach aims to create interpretable models that can simulate or replace black 



box models, achieving high accuracy and comprehensibility without trading the performance for 

transparency. The scope distinction of XAI emphasizes the differing priorities between personal 

and systemic view in the use of AI. 

 

Model-specific vs model-agnostic 

Lastly, model-specific methods are tailored to particular model architectures, whereas model-

agnostic methods can be applied across different models and domains. 

The selection between model-specific and model-agnostic methods is contingent upon the 

particular explainability goals and the type of model employed (Langer et al., 2021). Developers 

might have a preference for exploring model’s parameters using model-specific methods instead 

of model-agnostic ones for greater precision. Whenever a profound understanding of model 

behaviour is essential like in research setting, model-specific methods are often prioritized. For 

instance, when the objective is to investigate the internal parameters of a complex neural network, 

a model-specific method like Layer-wise Relevance Propagation is preferred due to its precision 

(Binder et al., 2016). Similarly, researchers or developers examining the functionality of 

convolutional neural networks in image recognition tasks might utilize Integrated Gradients to 

attribute predictions to input features (Sundararajan et al., 2017). Conversely, if the goal is to 

provide generalizable explanations across various models a model-agnostic approach such as Shap 

is more suitable due to its flexibility. It holds true for industrial setting and commercial 

applications, especially if the end-users do not have AI expertise. Model-agnostic methods offer 

consistent explanations across different models, thereby enhancing transparency and building trust 

in AI systems by comparative studies (Gupta & Seeja, 2024). 

The aforementioned taxonomies constitute only the most general part of the XAI categorizations. 

More detailed taxonomy can be found in the reviews that focus specifically on the XAI 

classification (Arrieta et al., 2019; Schwalbe & Finzel, 2023; Speith, 2022). 

In this study, three XAI methods were chosen for the assessment. They are explained further in 

the following sections – Bayesian network, tree-based Araucana and Shap. Table 1 shows their 

categorization according to the XAI taxonomy described in this section. 



Table 1. The summary of the taxonomy of the explanations used in this study. 

XAI TECHNIQUE STAGE SCOPE APPLICABILITY 

ARAUCANA Post-hoc local Model-agnostic 

BAYESIAN 

NETWORK 
Ante-hoc global Model-specific 

SHAP Post-hoc local Model-agnostic 

 

The InXAID project 

This thesis is part of the Italian project PRIN PNRR 2022 ‘InXAID - Interaction with eXplainable 

Artificial Intelligence in (medical) Decision making’ CUP: H53D23008090001, funded by the 

European Union - Next Generation EU. 

This project focuses on enhancing the explainability of AI models in DSSs, especially in critical 

healthcare settings. It aims to develop a methodological framework for designing and validating 

Human-AI collaboration protocols, ensuring AI systems are fair, ethical, and trustworthy. The 

project will investigate XAI approaches to improve decision quality, reduce biases, and increase 

user confidence. Ultimately, it seeks to foster effective human-AI collaboration, leading to better 

decision-making outcomes. The inXAID project aims to enhance healthcare DSS by developing 

and evaluating AI-based models and methods. The project will adopt a model-agnostic approach, 

emphasizing the interaction between DSS and users to maximize the positive influence and 

appropriateness of DSS support. Expected outcomes include protocols for efficient and safe data 

input and result interpretation, ensuring users can make informed decisions based on AI system 

outputs. 

 



Objectives and hypotheses 

 

Most of the literature currently focuses on theoretical predictions identifying potential pitfalls and 

creating explainability frameworks. It leads to multiplication of terminology and speculation both 

in the scientific literature and in legislation (Schneeberger et al., 2023). However only 

experimental approaches can provide evidence as to which solutions are viable and feasible in real 

settings. 

In the present study, we aim to combine usability research and cognitive psychology to evaluate 

the effectiveness and empirically test different XAI explanations. Our work focuses on three XAI 

techniques, built on top of the ALFABETO project (Nicora et al., 2021) - Araucana, Bayesian 

network and Shap. 

The following objectives are set and addressed with corresponding research questions and 

hypotheses. The first objective of the thesis is the investigation of human-XAI collaboration in 

the medical setting by high-level analysis and integration of XAI research, psychological and 

usability studies (Table 2 RQ1 & RQ2). The second objective is quantitative assessment of the 

human-XAI collaboration to empirically compare selected XAI methods (Table 2 RQ3 & RQ4). 

The analysis is supported by complementary objective to compare Emergency room (ER) and 

Infectious diseases (ID) departments as well as clinician pairs to provide further context for the 

results (Table 2 RQ5 & RQ6). The final objectives are: the assessment of emotional tone as an 

approach in XAI-interaction research and positioning of the results in the theoretical 

explainability frameworks (Table 2 RQ7 & RQ8). The objectives are reached through the 

aforementioned research questions and corresponding hypotheses (Table 2; Table 3). 

 

  



Table 2. Research questions. The abbreviations refer to two studied departments: ER – 

Emergency room, ID – Infectious diseases. 

RQ1: General Perception: What are the perceptions of clinicians regarding the use of human-AI 

collaboration tools in a medical setting? 

RQ2: Compliance: What are the compliance rates and how do they compare to established 

frameworks? 

RQ3: Method Comparison: How do clinicians’ perceptions of comprehensibility, helpfulness and 

cognitive load differ among the three XAI methods (Shap, Araucana tree and Bayesian 

network)? Do they align with directly expressed method preferences? 

RQ4: Sentiment Analysis (emotional tone): What is the emotional tone of clinicians’ attitudes 

towards each XAI explanation assessed through sentiment analysis? 

RQ5: Department Comparison: Are there any differences in terms of method perception and 

preference between ER and ID departments on average? 

RQ6: Pair Comparison: Are there any similarities or consistent patterns of comprehensibility and 

helpfulness ratings within allocated ER - ID clinician pairs? 

RQ7: Sentiment Analysis (suitability): Are general purpose sentiment analysis models a suitable 

tool for detecting emotional tone while assessing human-XAI interactions in the medical setting. 

RQ8: Explainability assessment: How does selected research design: survey, think-aloud and 

sentiment analysis fit into existing theoretical explainability frameworks? 

 

 

The first objective is reached through the evaluation of the literature, initial questionnaire and 

analysis of compliance (Table 3 H1 & H2). The second objective is addressed with the analysis of 

reported assessment of comprehensibility, helpfulness and method preferences as well as think-

aloud sessions assessing the cognitive load through time measurement (Table 3 H3). Sentiment 

analysis is performed to assess XAI methods in terms of emotional tone (Table 3 H4). Comparison 

between departments and pairs is achieved through additional analyses of the survey answers 

(Table 3 H5 & H6). Finally, evaluating the relevance of sentiment analysis and the overall study 

design in terms of theoretical explainability is performed (Table 3 H7 & H8). 

 

 



Table 3. Study Hypotheses. The abbreviations refer to two studied departments: ER – Emergency 

room, ID – Infectious diseases. 

H1: General Perception: Clinicians generally perceive human-AI collaboration tools as positive 

and trustworthy in the medical setting. 

H2: Compliance: Significant proportion of the compliant decisions are incorrect, indicating 

potential over-reliance on the XAI system. 

H3: Method Comparison: There are significant differences in comprehensibility, helpfulness and 

cognitive load  measures among Shap, Araucana tree and Bayesian network. 

H4: Sentiment Analysis (emotional tone): Sentiment analysis reveal differences in the emotional 

tone between Shap, Araucana tree and Bayesian network mirroring the perceptions found with 

the use of the survey. 

H5: Department Comparison: There are significant differences in tool perceptions and 

preferences between ER and ID departments, with ER clinicians preferring tools that provide 

rapid, comprehensible explanations and ID clinicians preferring tools that offer more detailed, in-

depth explanations. 

H6: Pair Comparison: Within allocated clinician pairs, there are consistent patterns in 

comprehensibility and helpfulness ratings, reflecting similar perceptions and preferences of 

clinicians from ER and ID departments while assessing same patients and corresponding XAI 

explanations. 

H7: Sentiment Analysis (suitability): General purpose sentiment analysis models are suitable for 

assessing emotional tone towards XAI tools in the medical setting. 

H8: Explainability Assessment: Studied tools can be fit into theoretical frameworks and highlight 

the need for theoretical and empirical studies being conducted together. 

 

  



Methods 

 

Related work 

Alfabeto project 

The study was done as a part of the ALL FAster BEtter Together - ALFABETO project which 

aims to explore clinicians’ perceptions of various explanations for AI classifications generated by 

different XAI methods and evaluate their impact on users (Catalano et al., 2023; Nicora et al., 

2021). 

Within the ALFABETO project, machine learning models were developed to predict whether a 

COVID-19 patient in electronic health records (EHR) requires hospitalization, classifying patients 

into ‘Home’ or ‘Hospital’ categories based on clinical features. The ALFABETO project was 

focusing on clinical and chest X-ray data. To address the interpretability issue, explainable-by-

design Bayesian networks were used as they incorporate medical knowledge and patient data in a 

complete way. They were investigated and found to be both explainable and effective, performing 

comparably to less interpretable models across various COVID-19 waves. The training data was 

collected from 660 COVID-19 patients treated at the I.R.C.C.S. Policlinico San Matteo Foundation 

of Pavia, Italy. Half of the patients required hospitalization, while the rest had a better prognosis 

and were managed at home. For each patient, additional clinical characteristics were collected such 

as age, gender, and comorbidities. Deep Learning was utilized to extract features from chest 

radiographs (RX): a deep network X-RAIS was used to analyse different types of medical images 

and extract relevant diagnostic information. Here, X-RAIS transformed the RX images into five 

numerical features: Consolidation, Infiltration, Edema, Effusion, and Lung Opacity. These five 

features, combined with 19 clinical features, served as inputs for a machine learning model to 

predict whether a patient should be hospitalized (class 1) or not (class 0). 90% of the patients were 

randomly selected for the training set, and 10% were used for testing and identifying the best-

performing model. 

To create the Bayesian Network, initially a graph was designed based on existing knowledge to 

reflect clinicians’ decision-making. This graph included a target node for hospitalization decisions, 



considering factors like age, gender, and breathing difficulties. then the graph was enhanced using 

the hill climbing search algorithm on training data, which adjusts edges to maximize a fitness score 

until a local maximum is achieved (Nicora et al., 2021). 

 

Bayesian network for the prognostication of COVID-19 ER cases 

Bayesian networks play a significant role in constructing predictive systems by offering both local 

and global explanations through their probabilistic graphical models. Bayesian networks 

are explainable-by-design. They are probabilistic graphical models that represent a set of variables 

and their conditional dependencies via a directed acyclic graph (DAG). This structure inherently 

provides transparency in the model, reasoning, and evidence (Derks & de Waal, 2020). These 

networks use DAGs to represent variables and their conditional dependencies, making them 

inherently interpretable. On a local level, Bayesian networks can clarify individual predictions by 

showing the probabilistic relationships and dependencies that led to a specific outcome. On a 

global level, they provide insights into the overall structure and behaviour of the model, showing 

how different variables interact and influence each other across the entire dataset. 

A DAG is a type of graph used in various fields like mathematics and computer science to represent 

objects connected by directed edges, ensuring no cycles are present (Figure 2-left). This means it 

is not possible to start at one node and follow a path that leads back to the same node. DAGs 

consist of nodes (vertices) and directed edges (arcs), which prevent the formation of loops. They 

are particularly useful for modelling processes with a clear directional flow by visualizing 

dependencies and sequences of events. In Bayesian networks, DAGs represent probabilistic 

relationships among variables, ensuring the network can be interpreted as a series of conditional 

dependencies, making them valuable for understanding complex systems. 



 

 

Figure 2. Examples of a directed acyclic graph (‘Directed Acyclic Graph’, 2024) (left) and the 

example of the Bayesian network used in the survey (right). 

 

The process of constructing a DAG Bayesian network involves few steps. First, relevant variables 

that represent different aspects of the system being modelled need to be defined, including the 

possible values for each variable, which can be either discrete or continuous. In this study the 

parameters of the systems are blood test results and relevant details of the patients collected during 

the COVID-19 pandemic. Here, the parameters are marked as circles and red values represent 

corresponding conditional probabilities (Figure 2). Then, the network structure is created by 

connecting the variables with directed edges that represent causal or conditional dependencies, 

ensuring the graph remains acyclic. After that, the Conditional Probability Tables (CPTs) for each 

variable, which quantify the probabilities of the variable’s values given the values of its parent 

variables in the DAG, have to be specified. Finally, the network should be validated by comparing 

its predictions with known data or expert knowledge to ensure it accurately represents the system. 

This process results in a Bayesian network that can be used for tasks such as diagnostics, reasoning, 

and decision-making under uncertainty (Boettcher & Dethlefsen, 2003). 

Bayesian networks and other artificial intelligence algorithms differ significantly in their 

theoretical foundations, operational mechanisms, and applications. Bayesian networks are 



probabilistic graphical models that use DAGs to represent variables and their conditional 

dependencies. They are highly transparent and interpretable, making them ideal for fields like 

healthcare where understanding the reasoning behind predictions is crucial. In contrast, neural 

networks and other AI algorithms, such as neural networks and decision trees, often prioritize 

predictive accuracy over interpretability. Neural networks, for example, are far superior at 

handling large, complex datasets and learning intricate patterns but are often seen as “black boxes” 

due to their lack of transparency. Additionally, Bayesian networks can incorporate both data-

driven and expert knowledge, offering flexibility and modularity, while other AI algorithms may 

not provide the same level of insight into their decision-making processes (Kitson et al., 2023). 

 

AraucanaXAI – tree-based explanations of ML predictions 

A decision tree is a tool used for making decisions and predictions. It resembles a flowchart, where 

each node represents a decision point or a test on an attribute, each branch represents the outcome 

of the test, and each leaf node represents a final decision or classification (Figure 3) (What Is a 

Decision Tree?, 2021). 

The AraucanaXAI (Araucana) (Parimbelli et al., 2023) method is an innovative technique for 

providing local explanations of machine learning model predictions. It utilizes decision trees to 

create interpretable models capable of managing non-linear decision boundaries, ensuring high 

fidelity to the original model’s predictions. By growing unpruned trees, the Araucana enhances the 

accuracy of its explanations, making it particularly valuable in critical applications like medicine 

where transparency and reliability are essential (Figure 4). Furthermore, this model-agnostic 

approach is compatible with a variety of machine learning models, which makes it a flexible tool 

for improving the interpretability of complex AI systems. 

 



 

Figure 3. A simple example of a deterministic true/false decision tree. 

 

 

 

Figure 4. An example of Araucana output tree. In the example of the Araucana tree for this patient 

PCR = 16.2 and Wbc = 6.4, so the first condition is false (16.2 > 6.725) and after moving down 

the tree the second condition is true (6.4 < 7.545), resulting in ‘Hospital’ classification. The 

explanation path is highlighted in orange. 

 

Araucana can be more suitable over other local, model-agnostic, post-hoc explanation methods, 

and improve fidelity compared to LIME (Ribeiro et al., 2016), and the ability to handle both 

classification and regression problems. The approach reuses the original training set, which helps 

uncover biases and unexpected model behaviours. However, it has limitations, including the 

complexity of unpruned explainer trees and the need for the original training set. 

Constructing a decision tree involves a series of steps aimed at creating a model that can make 

decisions based on input data. The process begins with selecting the best attribute to split the data, 



which is typically done using criteria like information gain. Information gain measures the 

reduction in entropy after splitting a dataset based on a specific attribute. The attribute that achieves 

the highest information gain is the most effective at classifying the training data according to its 

target classification, as it best reduces uncertainty. The data is then divided into subsets based on 

the chosen attribute, and this process is recursively applied to each subset. This recursive splitting 

continues until a stopping condition is met, such as all data points in a subset belonging to the 

same class or reaching a maximum tree depth. The final result is a tree where each internal node 

represents a decision based on an attribute, each branch represents the outcome of that decision, 

and each leaf node represents a final classification or decision. 

One advantage of the Araucana tree is its completeness because the trees are constructed using all 

the parameters (Parimbelli et al., 2023). However, in practical applications such as DSSs in 

healthcare the trees have to be pruned to include fewer parameters in favour of comprehensibility 

and understandability. 

 

Shapley values 

Shapley values or SHAP (SHapley Additive exPlanations) (Lundberg & Lee, 2017) here referred 

to as Shap, originating from cooperative game theory, are pivotal in enhancing the explainability 

of AI systems, particularly in medicine. They provide an effective method to attribute the overall 

outcome of a predictive model to individual features (Figure 5). By calculating the marginal 

contribution of each feature across all possible combinations, Shap helps interpret complex AI 

models, making them more transparent. Shap is an example of local explanations. In medical 

applications, this means understanding which patient characteristics (e.g., age, genetic markers, 

lifestyle factors) most significantly influence predictions, such as disease risk or treatment 

efficacy.  

This transparency not only aids in personalized medicine by tailoring treatments to individual 

patients but also ensures that healthcare providers can trust and effectively utilize AI-driven 

insights for better patient outcomes (Feretzakis et al., 2024) (Ter-Minassian et al., 2023). 



 

Figure 5. A simple example of summation of positive and negative Shapley values which results in 

the final prediction probability 0.9 (E. Gerber, 2019). 

 

In the context of the study, Shap explanation was providing the clinicians with the presentation of 

seven variables and their contributions to the overall prediction for each patient (Figure 6). 

 

 

Figure 6. An example of Shap explanation used in the survey. The bars show the parameters and 

their contribution to the final prediction. Red bars show the contribution that pushes the prediction 

towards hospitalization, blue bar shows the contribution that pushes the prediction towards 

discharge from the hospital. (y-axis parameters – PCR (Polymerase chain reaction), Effusion, 

White blood cells (WBC), Infiltration, Sex, Edema, Respiratory difficulty). 



Studies evaluating XAI in medical decision making 

Many of empirical studies highlight the fact that human-AI and human-XAI collaboration is more 

fruitful and achieves better results than clinicians or the AI alone (Cabitza et al., 2023; Reverberi 

et al., 2022). The existing literature on XAI emphasizes theoretical frameworks and implications, 

often highlighting potential pitfalls and proposing various solutions. However, as highlighted by 

(Holzinger et al., 2019), achieving explainable medicine requires measurement of the quality of 

explanations, similar to how usability measures the quality of use. Importantly, it differentiates 

causability – a human attribute, from explainability – a system’s attribute. It distinguishes 

explainability as a technical term related more to model engineering which rely predominantly on 

statistical learning as opposed to the human cognition wired for making causal inferences (Pearl, 

2018). The proposed human-centered approach states that successful explanations have to leverage 

the ways in which human experts make decisions in contrast to just providing an explanation of a 

predictive model (Holzinger et al., 2019). 

For example, two XAI user studies: one with 12 specialist radiologists and another with 44 ECG 

readers who assessed 240 and 20 cases, respectively, explored different collaboration setups 

(Cabitza et al., 2023). The results confirm the utility of AI support but also reveal that XAI can 

sometimes lead to a “white-box paradox,” resulting in neutral or negative effects (Cabitza et al., 

2023). This paradox underscores that although explanations aim to make AI systems more 

transparent and comprehensible, they can inadvertently foster a false sense of security, leading 

users to depend too much on the AI’s recommendations, even when they are incorrect. 

Additionally, Cabitza et al., 2022 puts much emphasis on the importance of the presentation 

sequence. For example, AI recommendation can either be seen first before the clinician makes the 

decision, in contrast to clinician making the decision after seeing AI recommendation. According 

to the study decision-making after seeing AI recommendation leads to higher diagnostic accuracy 

(Cabitza et al., 2022). 

Another study (Lesley & Kuratomi Hernández, 2024) using mixed-methods approach evaluating 

XAI concluded that XAI explanations often do not meet physicians’ expectations for reducing 

uncertainty and providing detailed explanations. Interestingly, the areas deemed most important 

by physicians performed the worst, while it excelled in less critical areas. Physicians also 

emphasized the need for better AI and XAI training for clinical staff, integration of these tools into 



routine healthcare and the ability to customize XAI explanations (Lesley & Kuratomi Hernández, 

2024). 

However, many systems already in practice have not been widely studied in terms of the 

collaboration with the clinician (Troya et al., 2022) such as computer-aided polyp detection (CAD) 

which is already adopted in clinics. When under investigation, CAD systems outperformed human 

examiners in terms of the speed of polyp detection. However, the integration of CAD did not lead 

to a quicker detection time for human examiners. The use of CADe systems resulted in more 

frequent misinterpretations of the mucosa and a decrease in the distance the eye traveled during 

mucosal inspections. Analysis of false positives and eye-tracking data indicated significant 

changes influenced by CADe, suggesting a potential risk of overdependence and skill degradation 

when these systems are employed (Troya et al., 2022). It suggests that the systems should be 

widely studied before the implementation into clinical practice.  

Overall, the studies call for human-centered XAI research that respond to the needs of particular 

users preferably before the implementation of the systems in clinics (Kong et al., 2024). One major 

literature gap is the lack of comprehensive user studies that incorporate insights from cognitive 

and social sciences to evaluate the effectiveness of XAI methods (Kong et al., 2024; Liao & 

Varshney, 2022). While many studies focus on developing new algorithms and technical solutions, 

there is a shortage of research that examines how these solutions are perceived and utilized by end-

users, particularly non-experts (Severes et al., 2023). Additionally, existing studies often fail to 

address the diverse needs of different stakeholders in healthcare settings. This gap highlights the 

need for more interdisciplinary approaches that combine technical, cognitive, and social 

perspectives to create XAI systems that are truly user-friendly and effective in real-world 

applications (Kong et al., 2024). Furthermore, there is a need for standardized evaluation metrics 

and frameworks that can consistently measure the usability and trustworthiness of XAI systems 

across various domains (Severes et al., 2023). Addressing these gaps is crucial for advancing the 

field of human-centered XAI and ensuring that AI technologies are both explainable and beneficial 

to all users. 

These points are addressed in the present study by integration of cognitive psychology, usability 

and explainability frameworks. It is focused on end-users which are not familiar with neither AI 

nor XAI. It provides further context by identifying differences between two different medical 



wards showing the diversity and complexity of the medical setting. The originality of the study 

lies in the diversification of the techniques used for evaluation of XAI to provide stronger and 

more contextualized evidence. Finally, it positions the study in the theoretical explainability 

frameworks which is a crucial step towards creation of standardized evaluation metrics for XAI 

usability and trustworthiness. 

 

Study design 

Study participants  

10 experienced clinicians from two departments (5 from emergency room, i.e. ER, and 5 from the 

infectious disease, i.e. ID) took part in the survey. All of them belong to I.R.C.C.S. Policlinico San 

Matteo Foundation of Pavia, Italy. Collecting the data from clinicians from two different 

departments provides additional insights because their decision-making is guided by different 

environments. ER requires often fast decision-making and action followed by immediate 

consequences. On the other hand, ID department allows for more deliberate decision-making that 

take into account more data, including imaging, careful examination and interview with the patient. 

The years of experience  among clinicians, collected through an initial questionnaire (explained in 

detail in the following section), ranged from 1 to 30. The study involved 3 female and 7 male 

clinicians.  

The clinicians from the two departments were matched in pairs in order to compare the responses 

of two departments – ER and ID. The pairs of clinicians were created to best match the years of 

experience within the pair (Table 4). 

  



Table 4. Table showing years of experience (Exp.) and pairing of clinicians from two departments. 

ID – Infectious diseases, ER – Emergency room. 

 

 

Survey instrument 

In this study, KoboToolbox was employed to conduct the survey. This instrument facilitated the 

systematic and accurate collection of data, ensuring that all responses were securely recorded and 

readily accessible for subsequent analysis. 

 

Study protocol  

The study was initiated with a short questionnaire designed to gauge the general attitudes of the 

clinicians towards AI in medicine. It was composed of 5 yes/no questions (Table 5). 

The information collected included also years of experience, department and sex. The structure 

and layout of the initial questionnaire was included in the Appendix in section 1.1. The questions 

were used to assess the general familiarity with AI of the clinicians and the general attitude – 

skeptical or positive. 

  

 ID ER 

PAIR INDEX Clinician index  Exp. Clinician index  Exp. 

1 5 1 8 2 

2 1 2 9 6 

3 3 5 2 10 

4 6 15 7 24 

5 4 30 10 30 



Table 5. Five questions used in the initial questionnaire in Italian and their corresponding 

translation to English. Each question assesses either familiarity – Fam. or attitude – Att. towards 

AI in healthcare. 

NO. QUESTION (IT) QUESTION (EN) GROUP 

1 Ho una buona conoscenza 

nell'ambito dell'Intelligenza 

Artificiale. 

I have good knowledge in the field 

of Artificial Intelligence. 
Fam. 

2 Sono stato in contatto e/o ho usato 

sistemi di Intelligenza Artificiale nel 

mio lavoro. 

I have been in contact with and/or 

used Artificial Intelligence 

systems in my work. 

Fam. 

3 Sono convinto che un'Intelligenza 

Artificiale possa aiutarmi a 

rispondere piu orrettamente e 

velocemente a domande di cui non 

conosco le risposte con certezza. 

I am convinced that Artificial 

Intelligence can help me answer 

questions more correctly and 

quickly when I am uncertain. 

Att. 

4 Sono convinto che farmi aiutare da 

un'Intelligenza Artificiale (ad 

esempio un assistente virtuale) nel 

mio lavoro o nello studio possa 

aumentare la mia produttivita. 

I am convinced that being 

assisted by Artificial Intelligence 

(e.g., a virtual assistant) in my 

work or study can increase my 

productivity. 

Att. 

5 Sono convinto che farmi aiutare da 

un'Intelligenza Artificiale possa 

migliorare l'efficacia di quello che 

faccio. 

I am convinced that being 

assisted by Artificial Intelligence 

can improve the effectiveness of 

what I do. 

Att. 

 

 



A few weeks after the initial questionnaire, clinicians were presented with the main survey. The 

completion dates varied, as clinicians could fill out both the initial questionnaire and the main 

survey at their convenience. Each clinician was presented with ten patient cases. These patients 

were selected from a larger dataset of 50 patients (ALFABETO test set), ensuring that each case 

was evaluated twice. 

Half of the 50 cases represented correct predictions by the algorithm, with accurate explanations: 

true negative (TN) and true positive (TP). These refer to correctly predicted home discharges and 

hospitalizations, respectively. The other half represented incorrect predictions (with consistent 

explanations): false positive (FP) and false negative (FN). Consequently, each clinician evaluated 

an equal number of TP, TN, FP, and FN cases. 

To prevent negative bias against the explanations and predictions, TP and TN cases were always 

shown first (Cabitza et al., 2022b; Kim et al., 2020). After these correct classifications, the FP and 

FN cases were presented. 

To compare the two departments, clinicians participating in the survey were paired based on their 

years of experience prior to the experiment. Each pair of clinicians was presented with the same 

patients in the same order to directly compare their responses. Thus, 10 clinicians resulted in 5 

pairs (Table 4). 

Each patient’s case was presented as follows: (1) the patient’s characteristics, (2) the predicted 

class and its explanations, and (3) the final considerations. The exact structure and layout of each 

section can be viewed in section 1.2 of the Appendix. 

For each patient, the first piece of information shown was a table summarizing the patient’s 

characteristics (Table 6). These characteristics represent standard tests for patients admitted to the 

hospital during the COVID-19 pandemic and serve as the machine learning input features. The 

results should provide enough information to decide if the patient should be hospitalized or sent 

home. 

 

 

 



Table 6. An example of a table that represents the initial presentation of the patient’s 

characteristics to the clinician, i.e. personal data (age, sex), laboratory test results (PCR, WBC - 

White Blood Cells), breathing problems (cough, respiratory difficulty, COPD - chronic obstructive 

pulmonary disease, respiratory failure), comorbidities (arterial hypertension, diabetic mellitus 

type II, Cardiovascular pathology, Chronic renal failure, Ictus, Ischemic heart disease, Atrial 

fibrillation and Heart failure) and RX-features (Effusion, Consolidation, Edema, Infiltration, Lung 

Opacity). 

 

 

Next, (2) the predicted class (‘Home’ or ‘Hospital’) was accompanied by three explanations (Shap, 

Araucana tree, and Bayesian network) (Figure 7). The order of the presentation of the three 

explanations was randomised in order to avoid the preferences for a method due to a particular 

order.  

  



A. Shap explanation 

 

 

B. Araucana tree 

 

C. Bayesian Network 

 

 

Figure 7. Example of the three explanations shown during the survey. They all represent the 

explanation of the classification of the same patient summarised in Table 6.  



The study under consideration involves the analysis of real-world retrospective cases, which were 

presented in a random sequence. This methodological approach is consistent with the criteria 

established for Levels 4 and 5 within the evidence hierarchy relevant to empirical research in AI 

and XAI. According to (Famiglini et al., 2024), these levels are indicative of robust empirical 

validation and rigorous methodological standards. The alignment with these levels underscores the 

study’s adherence to high standards of evidence-based research, thereby enhancing the credibility 

and applicability of its findings in the context of AI and XAI. 

The graphical explanation was followed by two statements (Hoffman et al., 2018). The clinician 

had to assign the value on a Likert scale from 1-strongly disagree to 6-strongly agree for each 

explanation. The statements were chosen to represent two important usability measures – 

comprehensibility and helpfulness: 

- The explanation is intuitively understandable (1-6) 

IT: La spiegazione è intuitivamente comprensibile 

  

- The explanation helps me take an appropriate decision on the case at hand (1-6) 

IT: La spiegazione mi aiuta a prendere una decisione appropriata sul caso in questione 

Comprehensibility is established in the machine learning research as the capacity of a learning 

algorithm to convey its acquired knowledge in a way that humans can easily grasp (Arrieta et al., 

2019; Fernandez et al., 2019). It aligns with the usability principles of ease of learning and 

understandability. A system that is comprehensible allows users to quickly grasp how to use it, 

which is a key aspect of usability. This ensures that users can efficiently learn and navigate the 

system without extensive training or support. On the other hand, helpfulness fits with the 

principles of effectiveness and decision support. A supportive system provides users with the 

necessary information and tools to make informed decisions, thereby enhancing their overall 

experience. By ensuring that users have access to clear and helpful information, the system 

improves its usability and user satisfaction. It assists users in achieving their goals efficiently and 

effectively. Some synonyms of helpfulness include usable or useful. (What Is Usability - The 

Ultimate Guide, n.d.). 

 



After the first explanation and Likert scale evaluation the remining two explanations were 

presented and their corresponding Likert evaluation was taken. 

At the end of the case, (3) the clinicians were asked if they agree with the prediction and 

corresponding explanations and which explanation was the most useful in their opinion: 

- Overall, do you agree with the class predicted for the Patient? 

(IT: Nel complesso, sei d'accordo con la classe predetta per il Paziente?) 

 

- Overall, which type of explanation did you find most suitable and intuitive for this patient? 

(IT: Nel complesso, quale metodo di spiegazione hai trovato più adatto e intuitivo nel 

compito di classificazione del Paziente?) 

 

Think-aloud protocol 

Think-aloud is an established protocol in software engineering and cognitive psychology, however 

it is also very relevant in any case of decision-making. It has been used before in order to assess 

decision-making in healthcare, for example to compare clinician and nurse reasoning (Thompson 

et al., 2017) or decision-making at emergency departments (Gamborg et al., 2023; Press et al., 

2015). Some recent reports of clinical XAI DSSs have already used think-aloud it for assessment 

(Anjara et al., 2023). 

During the think-aloud session the user is supposed to verbalize all the thoughts, feelings and 

behaviours that occur while performing a task. The unstructured format allows for exploration and 

discovery of the issues and points that were not foreseen by the investigator. It allows for feedback 

that cannot be substituted by a questionnaire or an interview because the decision-making details 

and intricacies can be captured only while the decision is being made (Noushad et al., 2024). There 

is a vast literature on the biases of memory formation that prove that the retrospective account of 

events is largely distorted and influenced for example by additional information being gathered 

(Leighton, 2017). 

Two clinicians took the survey while following the think-aloud protocol. They were taking the 

survey in their regular clinical setting. They were speaking their first language – Italian in order to 



assure easy flow of verbalizing and not introduce differences between clinicians which might have 

different levels of the English language (Noushad et al., 2024). They are referred to in the text as 

Clinician 1 (C1) belonging to the ER team and Clinician 2 (C2) working at the ID department. The 

whole session was recorded with written consent. At the beginning the clinicians were encouraged 

to verbalize every thought, feeling and impression that is on their mind while they take part in the 

survey. The protocol specified no interaction with the clinician while they were taking the survey 

unless they stop verbalizing their thoughts for around 10 seconds.  

After data collection the recording allowed for additional time measurement and segmentation. 

Therefore, time spent on each patient and explanation was measured and compared with the 

questionnaire answers (Figure 8).  

The recording was transcribed with the use of advanced online translator - TurboScribe with 

timestamps which allowed for further analysis of the sentiments. The transcript was proof-read 

and translated to English with the Helsinki-NLP (Natural Language Processing) translation model, 

available on Hugging Face (Helsinki-NLP/opus-mt-it-en ), which is a state-of-the-art tool designed 

for translating text from Italian to English. It leverages advanced neural machine translation 

techniques to provide accurate and contextually appropriate translations 

 

  

https://huggingface.co/Helsinki-NLP/opus-mt-it-en


Screen views: 

Patient Explanation 1 Explanation 2 Explanation 3 

    

1 Shap Bayesian network Araucana 

 

Example timeline: 

 

 

 

 

 

 

 

 

Figure 8. Example of time measurement during the survey – Patient 1 (Pz 1). Time spent on the 

patient starts at the initial presentation of the patient and stops as the first explanation is presented. 

Time spent on the explanation starts with the initial presentation of the explanation and finishes 

as the clinician starts to evaluate the method in terms of helpfulness. 
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Sentiment Analysis models 

The transcript was annotated with the utterances related to four groups – Araucana, Bayesian 

network, Shap or neutral (description of the patients and technical or general comments). Due to 

scarcity of pre-trained sentiment models for the medical field, three established sentiment models 

were used to evaluate if they could be useful in the context of think-aloud in the medical setting. 

The models were not fine-tuned because of relatively small and diverse amount of data points from 

the think-aloud sessions. 

Three models were utilized and compared – Vader, Roberta and Bert. Vader and Roberta are well 

established for analysis in the English language while Bert can return the sentiment score for 

multiple languages including Italian. 

VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based 

sentiment analysis tool trained on Tweeter database. It is open-sourced under the MIT License  

(VaderSentiment 3.3.1 Documentation). It outputs positive, negative, neutral, and compound 

sentiment values, with the overall sentiment determined by the compound score. The calculation 

of the compound score involves several key steps. Each word in the sentiment lexicon is assigned 

scores for positive, negative, and neutral sentiments, ranging from -4 (most negative) to 4 (most 

positive). Heuristic rules are applied to account for punctuation, capitalization, degree modifiers, 

contrastive conjunctions, and negations, which adjust the compound score of a sentence. The 

scores of all words in the text are then standardized to a range of -1 to 1. 

BERT (Bidirectional Encoder Representations from Transformers) is an NLP model developed by 

Google AI (Devlin et al., 2019). Unlike traditional models, BERT processes text bidirectionally, 

considering context from both directions. This approach allows BERT to understand the nuanced 

meaning of words based on their surrounding context. Pre-trained on a vast corpus, including 

Wikipedia and the Toronto Book Corpus, BERT uses Masked Language Modeling (MLM) and 

Next Sentence Prediction (NSP) to learn language patterns. Its versatility allows it to be fine-tuned 

for various NLP tasks, such as question answering and sentiment analysis, with minimal 

modifications. This adaptability has made BERT a benchmark for performance in multiple NLP 

applications. The multilingual version of Bert-base-multilingual-uncased-sentiment 

(nlptown/bert-base-multilingual-uncased-sentiment · Hugging Face) is a model fine-tune for 

sentiment analysis trained on reviews training data. It is available in 6 languages including Italian. 

https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment


This model processes text input by tokenizing it and passing it through BERT model to generate 

contextualized embeddings. These embeddings are then fed into a classification layer that outputs 

a sentiment rating from 1 to 5 stars based on the highest probability class. The output can then be 

converted to the [-1, 1] range to be more easily compared and visualized. In the following section 

using the multilingual version of BERT will be abbreviated as Bert. 

RoBERTa (Robustly Optimized BERT Approach) here referred to as Roberta is a transformer-

based model developed by Facebook AI to enhance BERT. It improves upon BERT by removing 

the Next Sentence Prediction (NSP) objective, training on a larger corpus with more data, and 

using a dynamic masking pattern during training to better understand language context. The 

specific version of Roberta used in this work (Roberta-base – cardiffnlp/twitter-roberta-base-

sentiment) is trained on ~58M tweets and finetuned for sentiment analysis with the TweetEval 

benchmark (Barbieri et al., 2020). Roberta employs the same architecture as BERT, with multiple 

layers of self-attention and feed-forward neural networks, and is bidirectional, considering context 

from both sides of the text. These enhancements result in superior performance across various NLP 

tasks (Liu et al., 2019; RoBERTa). The model first processes the input text and outputs raw scores 

for each sentiment category (Negative, Neutral, Positive). These scores are then converted into 

probabilities using the softmax function, which normalizes them so that the sum of all probabilities 

equals 1, indicating the likelihood of each sentiment. 

The decision to use multiple sentiment analysis models, such as Vader, Roberta, and Bert, stems 

from the unique characteristics and methodologies each model employs. Due to these differences, 

the output values from these models are not directly comparable. Instead of focusing on the 

individual sentiment scores, the goal is to identify overarching patterns across the models. This 

approach allows for a more comprehensive and nuanced understanding of the emotional tone, 

leveraging the strengths of each model to provide a balanced analysis. Even though the direct 

comparison is not straightforward this approach seems to be the latest trend and can provide a 

more holistic overview of the emotional tone (Qi & Shabrina, 2023). 

The decision to use sentiment analysis models that focus on the English language instead of Italian 

was driven by several factors. Firstly, English is the most widely studied language in the field of 

NLP, resulting in a greater availability of pre-trained models and annotated datasets (Zhu et al., 

2024). The extensive research and resource availability enhance the reliability and performance of 

https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment


English-centric models (Wankhade et al., 2022). Additionally, while there are emerging models 

for other languages, such as Italian, they often lag behind in terms of accuracy and robustness due 

to limited training data and resources (Catelli et al., 2022).  Therefore, leveraging well-established 

English models like Vader, Robertaa, and Bert ensures more accurate and consistent analysis of 

sentiments. A recent study in Nature shows that leveraging sentiment analysis in languages such 

as Arabic, Chinese, French and Italian through translation to English first achieves high accuracy 

and better results than independent pre-trained models (Miah et al., 2024). Model comparisons 

reveal superior capabilities of cross-lingual sentiment analysis across a variety of pre-trained 

language models (Zhu et al., 2024). 

 

Analyses 

After the data collection the responses were anonymised and analysed. The comparisons of the 

measured parameters were made with the focus on aforementioned research questions (Objectives 

and hypotheses): 

 

RQ1: General Perception: What are the perceptions of clinicians regarding the use of 

human-AI collaboration tools in a medical setting? 

General perceptions were directly related to proportions of answers to the initial questionnaire 

estimating familiarity vs unfamiliarity with AI tools and skepticism vs positive attitude towards 

AI in healthcare. 

 

RQ2: Compliance: What are the compliance rates and how do they compare to established 

frameworks? 

In this study, compliance refers to the extent to which healthcare professionals adhere to the 

recommendations provided by AI DSS. Compliance was measured by the frequency of following 

AI recommendations. Several factors influencing compliance are known to influence compliance 



(Choudhury, 2022; Dlugatch et al., 2024). In this study, years of experience, attitudes towards AI 

in healthcare and time taken to complete the survey were compared across all clinicians.  

 

RQ3: Method Comparison: How do clinicians’ perceptions of comprehensibility, 

helpfulness and cognitive load differ among the three XAI methods (Shap, Araucana tree 

and Bayesian network)? Do they align with directly expressed method preferences? 

Multiple comparisons of comprehensibility and helpfulness were made taking into account 

individual answers and prediction classes (TP, TN, FP, FN). Relevant comparisons were assessed 

statistically with Wilcoxon signed-rank test. To evaluate cognitive load, mean time spent on each 

explanation for two clinicians taking part in the think-aloud was compared with pairwise Wilcoxon 

signed-rank test. 

 

RQ4: Sentiment Analysis (emotional tone): What is the emotional tone of clinicians’ 

attitudes towards each XAI explanation assessed through sentiment analysis? 

The exploratory comparison was made to detect patterns across chosen sentiment analysis models. 

The outputs of the models were visualized for each utterance form the think-aloud protocol as line 

plots to track the utterances and sentiments scores through time and as box-plots for aggregate 

comparisons. The models were introduced and described in the previous section (Think-aloud 

protocol). Statistical tests were not applied due to a small sample sizes and need for further fine-

tuning of the analysis. 

 

RQ5: Department Comparison: Are there any differences in terms of method perceptions 

and preferences between ER and ID departments on average? 

Comparisons of comprehensibility and helpfulness were made taking into account prediction 

classes (TP, TN, FP, FN). The results were compared with Wilcoxon signed-rank test. 

 

 



RQ6: Pair Comparison: Are there any similarities or consistent patterns of 

comprehensibility and helpfulness ratings within allocated ER - ID clinician pairs? 

In order to compare the responses within the pairs, the helpfulness and comprehensibility ratings 

were compared with weighted Cohen’s kappa (Landis & Koch, 1977). It is a measure of inter-rater 

agreement for categorical data, which includes ordinal scales such as the Likert scale used in this 

study. 

RQ7 and RQ8 focusing on more theoretical aspects were addressed by reflection of different 

steps of the analysis and study design (RQ7) and literature comparison (RQ8). 

 

  



Results 

 

Survey 

Initial questionnaire 

All clinicians completed the initial questionnaire with the following proportions of ‘yes’ and ‘no’ 

answers –Table 7. 

 

Table 7. The answers of the clinicians to the initial questionnaire. 

ID 
YEARS OF 

EXPERIENCE 

TEAM  SEX  1 2 3 4 5 

1 2 ID F No No Yes Yes Yes 

2 10 ER M No No Yes Yes Yes 

3 5 ID F No Yes Yes Yes Yes 

4 30 ID M No No Yes Yes Yes 

5 1 ID M No No Yes Yes Yes 

6 15 ID F No No Yes Yes No 

7 24 ER M Yes No Yes Yes Yes 

8 2 ER M No No No Yes No 

9 6 ER M Yes No Yes Yes Yes 

10 30 ER M No No Yes Yes Yes 

 

 



Based on the questions and answers, the general attitudes of clinicians towards AI in healthcare 

were identified: being familiar or unfamiliar with AI and being skeptic or positive towards AI. 

Familiarity was determined by answering ‘yes’ to either question 1 or 2. Three clinicians turned 

out to have some familiarity with AI answering yes to at least one of those questions (Table 8). 

Perceived usefulness or skepticism was determined by ‘no’ answers to questions 3 or 5. Two 

clinicians out of ten turned out to be skeptic towards AI in healthcare. One answering ‘no’ to two 

and one to one question (Table 8). Answering ‘yes’ to these questions was referred to having 

positive attitude towards AI in healthcare. 

The rest of the clinicians (5) were neither familiar nor skeptic towards AI and are classified as 

unfamiliar with AI but having positive attitude towards it. 

 

Table 8. Proportions of answers to the initial questionnaire measuring general attitudes towards 

AI in healthcare.  

NO. QUESTION YES NO 

1 I have good knowledge in the field of Artificial Intelligence. 2 8 

2 I have been in contact with and/or used Artificial Intelligence 

systems in my work. 

1 9 

3 I am convinced that Artificial Intelligence can help me answer 

questions more correctly and quickly when I am uncertain. 

9 1 

4 I am convinced that being assisted by Artificial Intelligence (e.g., a 

virtual assistant) in my work or study can increase my productivity. 

10 0 

5 I am convinced that being assisted by Artificial Intelligence can 

improve the effectiveness of what I do. 

8 2 



Compliance 

The survey was completed by all the clinicians in the course of two months. 

In general, the compliance (agreement with the prediction) was ranging from 100% to 70% (while 

half of the cases were true positive (TP) and true negatives (TN) and half false positives (FP) and 

false negatives (FN) – 50:50 ratio. One clinician showed compliance of 70%, four of 80%, three 

90% and two 100% (Figure 9). The average compliance was equal to 86%. 

Comparing how years of experience influence compliance, there is a general trend of increased 

compliance with the years of experience (Figure 10). This trend is the same for male and female 

clinicians (Figure 11 (left)). The relationship of increased compliance with greater years of 

experience is strong for the ID department and has the slope close to 0 for the ER department 

(Figure 11 (right)). 

 

Figure 9. Overview of compliance, agreement with the prediction, of all clinicians. Average 

compliance was equal to 86%. Starting from patient 6 the cases transition from TP and TN to FP 

and FN. 



 

Figure 10 Compliance compared to years of experience for all clinicians. 

 

 

 

Figure 11 Comparison of compliance for male and female clinicians (left) and comparison of 

compliance for two departments – ER – Emergency Room and ID – Infectious Diseases (right). 



Time taken to complete the survey was in the range from 6 to 85 minutes with the average time of 

28.8 minutes. There is a negative relationship between years of experience and time take to 

complete the survey and slight positive relationship between compliance and time taken to 

complete the survey (Figure 12). 

 

 

Figure 12 Scatterplot showing tested relationships between time taken to complete the survey 

and years of experience (left) or compliance (right). 

The comparisons of attitudes were made with years of experience and compliance of the clinicians. 

In general, clinicians familiar with AI showed less compliance and had fewer years of experience 

(two out of three) (green samples in Figure 13). Being skeptic was not associated with different 

compliance rates or with years of experience (blue samples in Figure 14). Having positive attitude 

towards AI and years of experience together were associated with increased compliance (Figure 

14). 

 

 



 

Figure 13. Comparing how general familiarity with AI of surveyed clinicians, measured through 

the initial questionnaire, relates to compliance and years of experience. 

 

Figure 14. Comparing how general attitude towards AI of surveyed clinicians, measured through 

the initial questionnaire, relates to compliance and years of experience. 



 

Comprehensibility and helpfulness 

In order to identify the strategy for the analysis of Likert scales of helpfulness and 

comprehensibility, individual ratings over the course of the whole survey were visualised (Figure 

15; Figure 16; Figure 17; Figure 18). It allowed for an overview of the answers within pairs and 

between departments. The overall helpfulness and comprehensibility scores showed 

approximately normal distributions (Figure 19). 

 

Pair 1 ID        ER 

 

 

Pair 2 ID        ER 

 
 

Figure 15. The comparison of helpfulness scores of the explanations (Araucana, Bayesian network 

and Shap) for all patients for the three first pairs of clinicians – 1 and 2. 

 

  



Pair 3 ID        ER 

 

 

 
 

Pair 4 ID        ER 

 

 

 
 

Pair 5 ID        ER 

 

 
 

Figure 16. The comparison of helpfulness scores of the explanations (Araucana, Bayesian network 

and Shap) for all patients for the clinicians pairs 3, 4 and 5. 



 

Pair 1 ID        ER 

 
 

Pair 2 ID        ER 

 
 

Pair 3 ID        ER 

 
 

Figure 17. The comparison of comprehensibility scores of the explanations (Araucana, Bayesian 

network and Shap) for all patients for the three first pairs of clinicians – 1, 2 and 3. 

 

 

 



 

Pair 4 ID        ER 

 
 

Pair 5 ID        ER 

 

 
 

Figure 18. The comparison of comprehensibility scores of the explanations (Araucana, Bayesian 

network and Shap) for all patients for the clinicians pairs 4 and 5. 

 

 

Figure 19. Distributions of all the scores for all the explanations for comprehensibility (left) and 

helpfulness (right). 



 

Densities of the scores compared individually for each method show that Shap and Araucana are 

shifted towards more positive scores compared to the Bayesian network (Figure 20). Indeed, the 

comparisons of the distributions show that both for helpfulness and comprehensibility Shap 

achieved the highest scores, Bayesian network the lowest and Araucana with the scores in the 

middle (Figure 21). The Wilcoxon signed-rank test of the scores shows that all the comparisons 

are statistically significant (Figure 21). 

Splitting helpfulness and comprehensibility scores by department shows that for the ID department 

(Figure 22) the differences between the three explanations are large for both usability measures; 

with Shap achieving the highest scores, followed by Araucana, and Bayesian network. For the ER 

department (Figure 23), the differences are small for comprehensibility, with no differences 

between Araucana and Shap, and Bayesian network achieving lower scores. While for helpfulness 

there are no differences between the three explanations. 

 

 

Figure 20. Densities of the scores of 10 clinicians for comprehensibility and helpfulness for three 

explanations: Araucana, Bayesian network and Shap. 



 

 

Figure 21. Box plots of the scores of 10 clinicians for comprehensibility (left) and helpfulness 

(right) for three explanations: Araucana, Bayesian network and Shap. Significance calculated with 

pairwise Wilcoxon test. * - p < 0.5, ** - p < 0.01, *** - p < 0.001, **** - p < 0.0001. 

 

Figure 22. Box plots of the scores of 5 clinicians from ID department for comprehensibility and 

helpfulness for three explanations: Araucana, Bayesian network and Shap. Significance calculated 

with pairwise Wilcoxon test. * - p < 0.5, ** - p < 0.01, *** - p < 0.001, **** - p < 0.0001. 



 

 

Figure 23. Box plots of the scores of 5 clinicians from ER department for comprehensibility and 

helpfulness for three explanations: Araucana, Bayesian network and Shap. Significance calculated 

with pairwise Wilcoxon test. * - p < 0.5, ** - p < 0.01, *** - p < 0.001, **** - p < 0.0001. 

 

The choice of favourite explanation (Figure 24) for each patient was also different for the clinicians 

of the two departments. The clinicians from the ER department chose Shap and Araucana with 

almost the same frequency counts and Bayesian network around one in five cases. Clinicians from 

the ID department largely chose Shap as their favourite method followed by Araucana chosen 

around 25% of the time and Bayesian network with negligible count score. 

 



 

Figure 24. Expressed explanation preferences according to the department of each clinician – 5 

from Emergency room (ER) (top) and 5 from Infectious diseases (ID) (bottom). The clinicians were 

asked directly to express explanation preference  for each case out of 10 and corresponding 

explanations. It resulted in 50 expressed preferences for each department in total. 

 

The comparisons of the scores dividing them into four classes – TP, TN, FP and FN were also 

visualized for three explanations. The comprehensibility scores for the four classes (Figure 25) are 

statistically significant comparing Shap values and Araucana to the Bayesian network. On the 

other hand, the comparisons between Araucana and Shap are less clear and significant only for FP 

cases. For the helpfulness scores (Figure 26) the comparisons are generally significant for all the 

classes comparing Bayesian network with Araucana and Shap. The least significant differences 

between the methods are found in the FN case. The comparisons between Araucana and Shap are 

significant only for FP cases. For other classes the medians and distributions are very similar for 

two methods.  

  



Multiple other comparisons were made such as the comparison of few cases in which the clinicians 

disagreed with the predictions (Figure 27). Out of 14 cases in which the clinicians disagreed: 3 

were TN, 3 were FP and 8 were FN. The distribution of scores of correct disagreements with FN 

predictions was visualized in order to show a different pattern than the overall score distributions 

(Figure 25; Figure 26). 

 

 

Figure 25. The comparison of the comprehensibility scores for each explanation split by the class 

of the patient: FN (false negative), FP (false positive), TN (true negative), TP (true positive). 

Significance calculated with pairwise Wilcoxon test. * - p < 0.5, ** - p < 0.01, *** - p < 0.001, 

**** - p < 0.0001. 

 



 

Figure 26. The comparison of the helpfulness scores for each explanation split by the class of the 

patient: FN (false negative), FP (false positive), TN (true negative), TP (true positive). 

Significance calculated with pairwise Wilcoxon test. * - p < 0.5, ** - p < 0.01, *** - p < 0.001, 

**** - p < 0.0001. 

 



 

Figure 27. Histogram of scores for few cases that clinicians disagreed with and correctly classified 

as wrong prediction. FN (false negative) – 8 patients and FP (false positive) – 3 patients. 

 

Within-pair comparison 

In order to systematically test the similarity of helpfulness and comprehensibility scores, weighted 

Cohen’s kappa was calculated. The table of pairs with clinician indices is listed in the methods 

section (Table 4). First, the scores for each explanation were calculated pairwise within each pair 

(Table 9). The scores were compared with the reference from the literature (Table 10). None of 

the scores reached the 0.4 threshold which is considered a moderately good agreement. The highest 

obtained score was 0.35 for helpfulness of Shap for pair 3 (Table 9). 

In order to get an overview of the similarity of the scores and check if any clinicians show 

particular similarity to any other clinician the weighted Cohen’s kappa was also calculated for all 

the clinicians and all three explanations (Figure 28). Few significantly high and low scores were 

detected but they were not consistent, for example the difference was present only for one 

explanation within a particular pair. For example, clinicians 5 and 10 had high similarity score for 

Araucana – 0.44, but score 0.00 for Bayesian network and -0.31 for Shap Figure 28). 

  



 

Table 9. Weighted cohen’s kappa scores for each of 5 pairs of clinicians. 

 

 

 

Table 10. The standard ranges for interpreting cohen’s kappa values (Landis & Koch, 1977). 

KAPPA (Κ) VALUE INTERPRETATION 

Κ = 1 Perfect agreement 

Κ > 0.75 Excellent agreement 

0.40 < Κ ≤ 0.75 Moderate to good agreement 

Κ ≤ 0.40 Poor agreement 

Κ < 0 Agreement worse than chance 

 

  



 

 

 

Figure 28. Weighted Cohen’s kappa comparison to evaluate within-pair agreement. Pairs: 5:8, 

1:9, 3:2, 6:7, 4:10. (Value of 0.00 is the result of no variability in rating for all 10 patients by one clinician, 

NA stands for variability equal to 0 during rating of two compared clinicians) 



Think-aloud 

Analysis of time 

The data was obtained and the time was split according to the methods section. For the general 

overview and meaningful analysis, the individual time sections spent on each explanation were 

visualized, as well as the mean time spent on each explanation (Figure 29). 

  

 

Figure 29. Time spent on each explanation over the course of the survey (top) and mean time spent 

on each explanation for C1 (left) and C2 (right). 



Both clinicians (C1 and C2) spent least amount of time on the Shap explanation and the greatest 

amount of time looking at Araucana. Bayesian network achieved the middle position. C1 spent 

more time looking at the Bayesian network and Araucana explanation than C2. On the other hand, 

both clinicians spent the same mean time on Shap explanation (Figure 29). 

Additionally, the time spent initially looking at each patient was also visualized for the general 

interpretation of the results (Figure 30). C1 spent more time initially looking at the patients, starting 

from patient 6. The distribution of time spent on initially looking at each patient is uniform for C2. 

The distributions of time spent on each explanation show that both clinicians spent the least amount 

of time on Shap explanations with the lowest variability (Figure 29, Figure 31)The results are 

statistically significant according to the pairwise Wilcoxon signed-rank test for C1 for Shap 

explanations compared to Bayesian network and Araucana (Table 11). 

Additional comparisons were made to compare the times spent on each patient based on the class 

it belongs (TP, TN, FP, FN). For C1 there is a visible increase of time during the presentation of 

the first patient for which the prediction is incorrect – patient 6 FN (Figure 32). A similar pattern 

is not observed for C2. For C2 a similar peak for the first FN case is also observed but in the sum 

of time spent on all three explanations (Figure 33).  

 

 

Figure 30. Time spent on each patient over the course of the survey for C1 (left) and C2 (right). 



 

 

 

Figure 31. Box plots of the time spent for each explanation over the course of the survey for C1 

(left) and C2 (right). 

 

Table 11. Pairwise Wilcoxon signed-rank comparisons of time spent on three explanations. * 

indicates statistically significant differences. 

PAIRWISE WILCOXON 

SIGNED-RANK TEST 
C1 C2 

COMPARISON P Value P Value 

Araucana vs Bayesian 0.475 0.721 

Araucana vs Shap 0.024* 0.123 

Bayesian vs Shap 0.027* 0.193 

 



 

 

 

Figure 32. Time spent initially looking at each patient by C1 (left) and C2 (right). 

 

 

Figure 33. Sum of time spent looking at all the explanations for each patient by C1 (left) and C2 

(right).  



Analysis of sentiments 

On the aggregate level there are no visible difference between three explanations for C1 for all 

three models (Figure 34 (left)), although Bert has lower average compound values than the other 

two models. On the other hand, the sentiments scores show the same pattern for all three models 

for C2 (Figure 34 (right)): the median and spread are shifted with Shap having most positive 

sentiments, Araucana slightly lower and Bayesian network with the lowest sentiment scores.  

The time courses allow for the identification of individual utterances and outliers for both 

clinicians (Figure 35). 

Only selected key utterances were directly displayed (Table 12). They represent the examples of 

the cognitive reasoning while interacting with the three explanations (Table 12 id 1-3) and ideas 

for improvement of the methods (Table 12 id 4-6). Clinicians indicated some strong opinions about 

the explanations such as very negative feelings towards the Bayesian network or highlighting the 

completeness of Shap (Table 12 id 10 & 9). Also, direct comparisons between the three 

explanations were made (Table 12 id 9).  Additionally, the possible differences between studied 

departments ER and ID were mentioned (Table 12 id 11) and the differences in the level of 

difficulty of classification between presented patients were highlighted (Table 12 id 8). 

Additionally, the clinician from the ID department highlighted the strong need for seeing the 

patient for correct classification (Table 12 id 12). 

 

 

  



 

Figure 34. The sentiment comparison of three models (Vader, Roberta and Bert) for three 

explanations (neutral – control, Araucana, Shap, Bayesian), Clinician 1 (left), Clinician 2 (right). 



 

Figure 35. The sentiment comparison of C1 - Clinician 1 (left) and C2 - Clinician 2 (right) for 

three models (Vader, Roberta and Bert) used for sentiment analysis over the course of the survey 

for Shap, Araucana and Bayesian network. The y-axis represents the sentiment score with -1 

indicating strongly negative, 1 strongly positive, and 0 neutral sentiment score. The x-axis 

represents the time course of the survey while assessing 10 patients (P1-10). 



Table 12. Key utterances extracted from the think-aloud. They show the examples of the decision-

making process for three explanations, key insights indicated by the clinicians about improving 

the explanations and few additional comments important for holistic understanding of clinical 

reasoning. Some utterances were slightly altered or paraphrased to make the utterance more clear 

and concise. 

TABLE ID 

(CLINICIAN) 
UTTERANCE SUMMARY 

   

1 

(C1) 

Okay, there is the explanation of Bayesian network, in which 

the various parameters are fixed and then it decides to send her 

home, on the basis basically of the parameters highlighted in 

red, just as an explanation of it, so it weighs the age towards 

hospitalization and the others instead all in sum are less than 

0.3, 0.3, 0.3, 0.1 and I agree, both clinically and then as 

examinations and radiology, it is a lady that I would have sent 

home too. The explanation comes almost easier on the table 

than on the Bayesian net so designed in the sense that it is a bit 

more linear - my thinking, than buttons, lines, arrows, so the 

interpretation for goodness sake, I grasp it. In the sense of the 

coefficients in red, so it is clear to me, but not too much. 

Example of 

decision-

making 

process for 

Bayesian 

network 

2 

(C1) 

And this is the Shap, so everything goes towards the discharge 

at home. Practically PCR, white blood cell oedema, 

langopassitis, so the characteristics, we say, main radiological 

results are good enough to go home also this is quite clear, 

certainly more than the Bayesian net in the sense that it 

immediately gives me an overview, but also as stuff, so I 

would say that like the other, it is always difficult to give the 

maximum in these things because you expect maybe there is 

something that goes beyond, but surely it is stands out from the 

first. 

Example of 

decision-

making 

process for 

Shap 

3 

(C2) 

[Looking at Araucana explanation] Then, infiltration, less than 

06, so go home. If you have difficulty breathing, less than 05, 

go home. If you have oedema, 05, you are hospitalized. So, 

intuitively understandable explanation. If you have difficulty 

breathing, less than 05, you go home. I do not understand this, 

Example of 

decision-

making 

process for 

Araucana 



also because here says difficulty breathing less than 05, but 

here tells you difficulty breathing false. 

4 

(C1) 

Here, it is more complete as reported data but remains a bit my 

confusion in having these lines without an arrow or a direction 

so the flow does not follow it really well but at least I 

understand that the radiological part conditions the choice and 

the final decision for the hospitalization even if with a 

coefficient not so high. Intuitive I would say no, 4 or less, the 

explanation helps me? being not so intuitive, not so much. 

Highlighting 

possible 

improvements 

for Bayesian 

network 

5 

(C1) 

At home, and instead here it pushes everything to send it home, 

I don't agree too much, in the sense that frankly intuitive 

absolutely yes, but I don't agree, i.e. it doesn't help me because 

it drags everything to one side in a way too striking, so there it 

is. 

Highlighting 

possible 

improvements 

for Shap 

6 

(C1) 

I agree with the hospitalization but logically I miss a passage 

here, while [referring to the previous explanation of Shap] 

before all were negatives, she goes home. Here there is one 

positive and the other is negative but she would have gone 

anyway seeing the various results. The decision is pulled a lot 

from the first parameter of PCR. It is definitely intuitive, but in 

my clinical reasoning - to be clearer and closer to the reasoning 

that I did - I would have put radiological data in it. Seeing that 

the white blood cells are not pathological, instead it reports the 

value of white blood cells. 

Highlighting 

possible 

improvements  

for Araucana 

7 

(C1) 

This, however, here is preferable because there are more 

parameters that are the clinically relevant ones that allow me to 

have a greater glance in this case than for Araucana so with 

this I would say that intuitively it helps me. This is really clear, 

more than the previous case. 

Expressing 

the 

completeness 

of Shap 

8 

(C1) 

Support of this kind for these borderline cases, in the sense that 

at least the support can help more than in clearly striking cases 

where you immediately decide, ‘this person needs to be 

hospitalized’. 

Indication of 

borderline 

cases 

9 

(C1) 

In this case I would say that absolutely [Shap] helps me the 

most, I would say yes, we agree, on the whole I agree. I believe 

Shap won by a wide margin, then Araucana, then the Bayesian 

Network in confidence and overlap. Sometimes the impression 

surpasses even the strength of the clinical decision. Shap 

Comparison 

between 

explanations 



pushes it more strongly than my evaluation, but both 

graphically and in terms of the parameters it considers, it is the 

one that I like the most as an explanation. 

10 

(C2) 

I have to take a course on this [looking at Bayesian network]. 

But actually, we can reveal that almost everyone has had this 

problem [Experimenter]. Now I feel better, otherwise it would 

depress me. I consider myself very ignorant in this field. I 

really struggle with this. Maybe for a young doctor, yes. For 

me, a system like this is not intuitive at all. 

Expressing 

lack 

intuitiveness 

of the 

Bayesian 

network 

11 

(C2) 

[Paraphrased and summarised answer] I find Shap and 

Araucana more intuitive, especially for emergency doctors who 

think in algorithms. In the ward [ID], I make decisions through 

clinical reasoning and seeing the patient rather than algorithms. 

While such models might not replace a doctor’s decision, I 

think they could be helpful in consultations, especially in 

emergency settings. This is similar to how we made decisions 

during Covid by examining data and tests. 

Explaining 

differences 

between two 

departments 

ID and ER. 

12 

(C2) 

There's no way to see them - the patients. Yes, this is a piece of 

paper. This is the classic patient you should see, you can't skip 

seeing the patients. This is an old man 92 years old who has 

pneumonia, you should actually see what this pneumonia is 

like. 

Highlighting 

the need for 

seeing the 

patient 

 

 

  



Discussion 

 

The analyses provided qualitative and quantitative results. Mixed approach leads to more holistic 

overview of the decision-making process and multiple comparisons between the three explanations 

– Araucana, Shap and Bayesian network. The analysis of compliance and the positioning of the 

results in the existing frameworks provided a wide overview of the practical implementation of 

human-AI and human-XAI collaboration. 

 

Survey 

Compliance 

In the study, the average compliance obtained equal to 86% was relatively high, especially taking 

into consideration that half of the presented cases were incorrect predictions (Figure 9). 

In the context of the dual-stream theory in medical settings, general compliance with AI DSSs can 

influence both cognitive streams. Clinicians often rely on System 1 processes due to their extensive 

experience and the need for quick decisions. It occurs especially after people’s initial positive 

assumptions of AI’s consistent performance. A more popular term in the literature related to 

compliance is reliance which is defined as the degree of trust and dependence that clinicians place 

on the AI-DSS (Dlugatch et al., 2024). Reliance is gauged by the extent to which clinicians depend 

on the AI-DSS for their decisions. In this context, compliance is more relevant because clinicians 

were asked to evaluate the case only after seeing the patients’ data and AI explanations. 

Nevertheless, high compliance can indicate reliance and trust in the AI-DSS so both were be 

considered. 

High compliance might occur when clinicians overly rely on the highly intuitive recommendations 

of AI (System 1), potentially leading to over-trust and reduced critical evaluation (System 2). It is 

usually referred to as automation bias - the tendency of individuals to over-rely on automated 

systems, often leading to errors when the automation fails (Kazim & Tomlinson, 2023). 

Automation bias can lead to significant errors, especially in high-stakes environments like 



healthcare. For instance, when physicians rely too heavily on AI-generated diagnoses without 

verifying with their own expertise, it can result in misdiagnoses. Additionally, the complexity of 

verifying automated outputs can further increase this bias, which is very relevant for AI-driven 

support, where there is usually no possible verification in case of doubts. In that case, physicians 

may find it challenging to engage System 2 processes to critically assess the AI’s recommendations 

(Goddard et al., 2014). 

An important factor that was relevant in the analysis of compliance were years of experience of 

the clinicians. Even though the sample size in the study was small (10 clinicians), the positive 

relationship between years of experience and compliance is clear (Figure 10). It aligns with 

research which generally suggests the over-reliance on intuitive thinking (System 1) of 

experienced clinicians (Caddick et al., 2023; Tsalatsanis et al., 2015). Dual-process theory 

highlights the interplay between heuristics from years of experience (System 1) and logical 

deduction (System 2). Over their careers, clinicians develop significant expertise through 

accumulated System 1 experiences, leading to quick and accurate pattern recognition. However, 

this same experience can also introduce gaps and biases due to individual clinical encounters. 

These biases and knowledge gaps underscore the importance of continuous training to maintain 

cognitive skills. Research indicates that physicians further from their training years often perform 

worse on medical knowledge tests (Caddick et al., 2023). This decline is influenced by factors 

including specialization and cognitive changes over time. Additionally, acquired skills may 

become less accessible due to lack of study, aging, and competing knowledge. 

Another factor influencing compliance is task difficulty. The inclination to over-rely on decision 

aids is influenced by the complexity of the task. As tasks become more challenging and approach 

the user’s cognitive limits, there is a growing tendency to depend on external resources, which can 

sometimes lead to erroneous reliance (Tahtali et al., 2024). Moreover, the higher the stake of the 

decision the higher the reliance on the decision aid (van Dongen & van Maanen, 2013). However, 

the clinicians were not asked about the level of difficulty and stakes they had in mind while 

performing the tasks. Their subjective perception of task difficulty and stakes could shed more 

light on the high compliance rates. The think-aloud analysis suggests that the FP and FN cases 

were much more difficult to classify compared to TP and TN in the study (Table 12 id 7), and, 

therefore, are likely to be labelled as borderline cases. 



The difficulty of establishing the ground truth of the cases assessed makes the interpretation of the 

compliance rates challenging. As indicated by the authors of the ALFABETO project (Catalano et 

al., 2023; Nicora et al., 2021) one of the limitation of the study was testing and validation of 

classifier results. The data was collected from a single centre without external validation. 

Additionally, the authors point out that all patients were managed in the tertiary centres, which 

creates the potential for the survival bias, particularly for patients categorized as having mild 

outcomes. 

To sum up, high compliance indicates strong alignment between AI suggestions and clinician 

decisions. Providing Explainable AI (XAI) explanations most likely enhances trust and 

compliance (Schemmer et al., 2022), though high compliance also indicate over-reliance on the 

DSS which has to be addressed and mitigated. 

To further understand the compliance in case of XAI it is essential to adapt the study design to 

collect clinicians’ compliance both before and after seeing each XAI method. Present study cannot 

fully assess the differences between the three methods because the clinicians were asked to indicate 

if they agree with the prediction only after seeing patient’s characteristics and all three 

explanations.  

 

Comprehensibility and helpfulness 

The comparisons of the individual scores revealed that clinicians have very different strategies and 

patterns related to scoring (regardless of department or years of experience). Some showed a lot 

of variance between the three explanations, while others showed little to no variance in scoring 

(Figure 18 Pair 4). Similarly, most clinicians showed differences between comprehensibility and 

helpfulness scores, others showed almost no variance, e.g. Pair 5 clinician 10 (Figure 16; Figure 

18). 

The analysis of the scores comparing Shap, Araucana and Bayesian network, have several 

important implications for the use of different XAI methods in medical decision-making. Firstly, 

the pattern of highest scores for Shap in both comprehensibility and helpfulness suggest that this 

method may provide more reliable and understandable explanations for clinicians, potentially 

leading to better-informed decisions. The intermediate scores of Araucana indicate it is a viable 



alternative, offering a balance between interpretability and accuracy. The lower scores for the 

Bayesian network highlight potential limitations in question its ability to provide clear and useful 

explanations in the present context (Figure 21; Figure 22). Some clinicians gave consistently low 

scores to Bayesian network which suggests lack of understanding of the method throughout the 

course of the survey, e.g. Pair 2 clinician 1 (Figure 17). 

The comparisons of scores divided by class (TP, TN, FP, FN) reveal more nuanced differences 

between the methods. For example, both Shap and Araucana have significantly higher 

comprehensibility scores compared to Bayesian network for all classes (Figure 25). The 

differences between Shap and Araucana are less significant; the significant difference is found 

only in FP cases. It suggests that for the FP cases, Shap is showing the most pronounced and 

statistically significant differences for comprehensibility. However, having in mind that only 3 out 

of 24 FP cases were correctly detected (Figure 27), it seems that Shap may inadvertently drive the 

compliance. Similarly, the differences in comprehensibility between FN cases considering Shap 

and Araucana are much smaller than between TN and TP cases (Figure 25). The same pattern is 

observed for helpfulness, but the differences are less pronounced than for comprehensibility 

(Figure 26). 

The analysis of few cases in which the clinicians correctly disagreed with the FN predictions show 

that, for helpfulness, Araucana receives higher scores than Shap and Bayesian network (Figure 

27). It suggests that lower level of comprehensibility can be the nudge to question AI in case of 

doubt and engage more system 2. On the other hand, high comprehensibility can be the driver of 

compliance, increasing reliance and trust, being too convincing. This anecdotal evidence is in line 

with literature. High comprehensibility and helpfulness scores of Shap reflect high usability 

(Hoffman et al., 2018), but can be also the drivers of over-reliance, especially in high-stakes and 

difficult decisions (Zytek et al., 2021). Conversely, less comprehensible methods such as Araucana 

require more effort leading to lower usability scores compared to Shap. But at the same time they 

can mitigate over-reliance engaging critical reasoning (Clement et al., 2023). Nevertheless, low 

comprehensibility scores may indicate a negative bias towards a method or a lack of understanding, 

as seen with Bayesian networks when they are overly complex and unintuitive. 

These results underscore the importance of selecting the appropriate XAI method based on the 

specific needs of the clinical context: previous experience, the decision stakes, time constraints, 



cognitive resources and many more. The ability of Shap and Araucana to provide higher and 

statistically significant scores suggests they are best candidates to enhance the trust and usability 

of AI systems in healthcare, ultimately improving patient outcomes. Further research and 

continuous evaluation are necessary to refine these methods and ensure they remain effective as 

standards of care evolve. 

 

Department comparison 

The analysis of explanation preference showed that clinicians from the ID department have very 

strong preference for Shap, while clinicians from ER show more balanced preferences choosing 

Shap and Araucana in almost the same proportions (Figure 24). It is reflected in the 

comprehensibility and helpfulness scores (Figure 22; Figure 23). It is the opposite of what might 

be expected, since ER is characterised by mainly fast decision-making (seconds to minutes) and 

ID by mainly slow decision-making (hours to days), as indicated by clinicians themselves during 

the think-aloud session (Table 12 id 11). The higher preference for Araucana by the ER department 

maybe be due to its algorithmic nature expressed by the clinicians and previous exposure to similar 

methods (Table 12 id 11). It hints at importance of prior experience of the clinicians in DSS design 

and the complexity of choosing the most suitable method. It is a factor that should be taken into 

account in future studies. 

 

Within-pair comparison 

The results of the study provide valuable insights into the similarity of helpfulness and 

comprehensibility scores among clinicians. The use of weighted Cohen’s kappa allowed for a 

systematic comparison of the scores, revealing several key findings. 

Firstly, the pairwise comparison of scores within each clinician pair did not reach the threshold of 

0.4, which would be considered a moderately good agreement (Table 9). The overall calculation 

of weighted Cohen’s kappa for all clinicians and explanations provided a broader view of the 

similarity in scores (Figure 28). Although a few significantly high and low scores were detected, 

these were not consistent across different explanations or clinician pairs. This inconsistency 



indicates that the agreement on helpfulness and comprehensibility scores may vary depending on 

some parameters that were not measured in this study. 

These findings have several implications. The lack of consistent high agreement suggests that there 

may be inherent differences in how clinicians perceive and evaluate explanations. This could be 

due to individual differences in experience, expertise, or personal views (Dinos et al., 2017). 

Understanding these differences is crucial for improving the design and presentation of 

explanations to ensure they are helpful and comprehensible to a wide range of clinicians. The 

differences in scoring could be also caused by the lack of uniform understanding of the concepts 

of comprehensibility and helpfulness, as well as the lack of reference (Hoffman et al., 2018). This 

source of variability could be removed by providing examples of scoring and clear explanations 

of the terms at the beginning.  

Overall, no consistent patterns or correlations were found. Nonetheless, the within-pair 

comparison has some limitations. The sample size of clinician pairs may not be large enough to 

generalize the findings to a broader population. Additionally, the use of weighted Cohen’s kappa, 

while useful, may not capture all nuances of agreement and disagreement. Future research should 

consider larger sample sizes. It would allow for alternative methods of assessing agreement such 

as clustering of clinicians based on rating strategies (Dopp et al., 2020). 

 

Think-aloud  

Two general important points were raised by the clinicians during the think-aloud session that 

might improve similar studies and provide a fuller picture of the results. 

The presented FP and FN cases might be borderline cases in which the ground truth is difficult to 

assess as indicated by the clinicians. It might (at least partly) explain the high compliance rates. 

Further evaluation of the presented cases and their classification in terms of level of difficulty 

could provide more holistic evidence. For instance, agreement with a prediction in ambiguous 

cases (where classification could go either way) does not carry the same weight as agreement in 

cases where the AI algorithm clearly misclassifies. (Table 12 id 7). 



The differences between every day decision-making at the two departments should be taken into 

account during the interpretation of the results and while developing XAI DSSs. According to the 

think-aloud session, the ER practitioners use more algorithmic approach: they make the decisions 

more quickly due to time constraints and emergency cases. On the other hand, at the ID department 

the decision-making is more extended in time and involves many more parameters, i.e. radiological 

images and seeing and talking with the patient, as indicated by the clinicians (Table 12 id 11). 

 

Analysis of time 

The analysis of the time spent on each explanation and the initial patient observation provides 

valuable insights into the decision-making process. However, they cannot be discussed separately 

as they are meaningful only analysed together with the rest of the results. 

The analysis of the mean time spent on each explanation reveals distinct patterns in the clinicians’ 

approaches. Both clinicians, C1 and C2, allocated the least amount of time to Shap explanations, 

while dedicating the most amount of time to Araucana, with the Bayesian network falling in 

between (Figure 29). However, various factors can influence the amount of time a clinician 

dedicates to analyzing an explanation (Sagar & Saha, 2017). According to the utterances, which 

show a consistent pattern, low time spent on Shap indicates that it is highly intuitive and self-

explanatory (Table 12 id 2). Araucana requires more time for following the conditional structure 

of the tree (Table 12 id 9 & 3). On the other hand, in many cases the explanation of the Bayesian 

network was skipped due to lack of comprehensibility and therefore lack of helpfulness (Table 12 

id 1 & 10). In this context, the results suggest that the three explanations are on a complexity 

continuum. The more complex the method, the more time is needed to extract meaningful 

information from the explanation. While Araucana is still comprehensible but requires some time, 

the Bayesian network would require too much time and effort to extract meaningful information, 

according to the clinician’s assessment (Table 12 id 1). 

Interestingly, C1 consistently spent more time on both the Bayesian network and Araucana 

explanations compared to C2 (Figure 29), indicating a possible difference in their reasoning styles 

or depth of detail. The uniform time distribution for Shap across both clinicians highlights a shared 

perception of its relative simplicity and intuitiveness. C1 belongs to the ER department and C2 to 



the ID department and the time differences are directly mirroring the explanation preferences of 

both departments (Figure 24). 

Additionally, the initial time spent at looking at the patient’s tabular data varied significantly 

between the clinicians (Figure 30). C1 spent more time initially observing patients’ data, 

particularly from patient 6 onwards, while C2 maintained a uniform distribution of initial 

observation times. This discrepancy may reflect differences in their diagnostic approaches or the 

accuracy of their initial assessments. The statistically significant results from the pairwise 

Wilcoxon test for C1’s Shap explanations compared to the Bayesian network and Araucana further 

underscore its ease of use (Figure 31; Table 11). Comparing the time each clinician spent looking 

at the patients (at the beginning of the case) and looking at the three explanations, both clinicians 

generally spent more time on the FP and FN cases. It is reflected by time spent initially looking at 

the patient for C1 and longer time spent on the explanations for C2 (Figure 33). However, the 

doubts reflected by allocating more time to FP and FN cases did not result in prediction 

disagreement. Both clinicians showed high compliance of 90%. 

However, it is important to note that the time measurements were taken during the think-aloud 

session (Sagar & Saha, 2017), i.e., while the clinicians were encouraged to spend more time on 

each explanation and to express all their thoughts. Sometimes the comments of different 

explanations overlap, making it difficult to set accurate and objective time boundaries. 

Additionally, general or neutral comments are scattered throughout the session. Time 

measurements during the survey for another group of clinicians without the think-aloud would 

account for those differences. 

 

Analysis of sentiments 

Analysis of sentiments is one of the approaches that are suitable for assessing another usability 

aspect not mentioned before and usually not discussed in the context of human-XAI collaboration 

– user experience (Imaduddin et al., 2023). 

However, in the present case due to the small sample sizes and unresolved outlier instances, the 

results are only tentative and should serve mainly as a mean for generation of future hypotheses. 



Taking into account the analysis of the aggregate sentiment scores, only the second clinician shows 

differences between the XAI methods. One possible reason might be the differences between the 

departments. The comparisons between the departments showed that ER department explanation 

preference is balanced with Shap and Araucana as a preferred method almost in equal proportions 

and Bayesian network being the preferred method at least in 1 in 5 of the assessed patients. On the 

other hand, clinicians from the ID department showed overwhelming preference for Shap. Taking 

into account that C1 belongs to the ER department and C2 to the ID department, the sentiment 

analysis may reflect this difference. 

Alternatively, the lack of differences for C1 may be the unsuitability of the chosen models. Most 

of the models were trained on large social media datasets and on the English language. The lack 

of fine-tuned models for the specific medical jargon and languages other than English such as 

Italian makes the automatic classification of sentiments difficult. The full automation of the 

sentiment scoring might not be possible for highly-specialized settings such as healthcare 

(Imaduddin et al., 2023). On the other hand, it creates a unique opportunity for expressing and 

comparing sentiments quantitatively, provided the process is closely supervised, adjusted, and 

enough data is available. Preferably, manual scoring by multiple raters could serve as a meaningful 

comparison for automated sentiment scoring. 

Another key point includes the difference in the structure and nature of the data that is used to 

usually train sentiment models and think-aloud transcripts. The models are trained on usually well-

structured sentences on the other hand think-aloud represents a stream of thoughts and ideas 

including a lot of pauses, colloquial expressions and often lack of full and structured sentences. 

Multiple approaches should be tested including revision of the transcripts and adding more 

structure to the sentences and thoughts. However, this approach may lead to additional biases. 

Ultimately, the sentiment analysis is able to process only verbally expressed information 

discounting for other forms of communication and responses that are more difficult to capture such 

as tone of voice, body language, eye movements or physiological responses. Ideal assessment of 

the emotional tone would include the integration to at least a few techniques. Taking that into 

account, sentiment analysis seems to be a great option as one of them. 

The time courses of the sentiments for different models allow for the identification of individual 

utterances and their sentiment scores through time. Nevertheless, the extraction of meaningful 



quantitative comparisons requires further investigation. It might involve further fine-tuning of the 

models, testing various criteria for division of the utterances and exploration of the accurate 

comparison level. 

Additionally, carefully selected utterances provide key insights directly from the clinicians. It is 

an invaluable indication of their reasoning processes, general impressions and important comments 

referenced throughout the discussion section. 

 

Integrated Discussion 

According to (Zytek et al., 2021), the identification of the existing usability challenges is the first 

step to address them and appropriately guide the design of the solutions. It is important to 

remember that the choices are highly specific to a particular domain and context. Introduction of 

new DSSs would almost always require the observations, interviews and user studies in order to 

avoid usability issues. In that way DSSs with XAI do not differ extensively from other software 

tools and DSSs. The authors identify seven main usability challenges of XAI DSSs and 

corresponding solutions. According to the aforementioned framework clinicians surveyed here 

have trust in the system, know the consequences of actions, the prediction by the model is clear 

and relevant. The main challenge that can be identified is ‘Difficulty Reconciling human-ML 

Disagreements’. For example in our study, during the think-aloud session, the clinicians expressed 

their doubts or disagreements for FP and FN cases but still proceeded with the direct answer that 

they agreed with the predicted class. The difficulty reconciling human-ML disagreements is 

suggested broadly to be mitigated by local explanations (Zytek et al., 2021). However, more 

precise measures targeting this issue should be further studied and developed. Evaluating 

compliance for each XAI technique separately would be invaluable. 

An unexpected result of the study was the disproportionately low performance of the Bayesian 

network explanation compared to Araucana and Shap. It performed the worst out of three 

explanations almost on every dimension measured. The reasons of this disproportion should be 

further investigated. For example, determining the graphical structure of the Bayesian Network 

remains a major challenge, especially when modelling a problem under causal assumptions. 



Solutions to this problem might include the automated discovery of Bayesian network graphs from 

data, constructing them based on expert knowledge, or a combination of the two (Kitson et al., 

2023) at the same time taking into account the specific user needs. Moreover, the visualization 

could benefit from the studies of usability and interface design. By following the design principles 

such as Google’s ‘Material Design’ (Material Design). The examples could include meaningful 

pre-selection of the displayed parameters, colour coding of the parameters, matching the size of 

the elements to mirror the strength of relationships or adjustment of fonts and text position. 

Moreover, according to (Clement et al., 2023) Bayesian networks do not belong to the most 

explainable models representing more the class of medium complexity and medium explainability 

(Figure 36). It suggests that XAI could be as interpretable and understandable as the simplest 

models. It could surpass complex models even if they are explainable-by-design. 

 

 

 

Figure 36. Classification of algorithms based on complexity and explainability (Clement et al., 

2023). 

 



Bayesian network explanation could be adjusted to better fit the context and cognitive needs of the 

users. The clinicians themselves indicated that both the design and lack of self-explainability of 

the Bayesian network don’t make it usable. Appropriate design and education would increase its 

usability. However, the need for additional workshops to understand Bayesian network and higher 

cognitive demand compared to other explanations make it less competitive compared to Shap and 

Araucana which would not require additional courses because of their self-explanatory nature. 

Nevertheless, further research should be undertaken to make a final conclusion and identify which 

factor is responsible for lack of usability in this case. 

Existing explainability frameworks such as (Combi et al., 2022) define usability as a separate 

dimension other than usefulness, interpretability and understandability (Figure 37).  

 

 

 

Figure 37. The dimensions of explainability by the XAI Manifesto (Combi et al., 2022). 

 

Here, usefulness and interpretability can be assessed through the measure of helpfulness and 

comprehensibility. The results of the ratings of all study measures show a similar pattern with Shap 

being the most helpful and comprehensible, Araucana being slightly less helpful and 



comprehensible and Bayesian network with the lowest scores for both dimensions. The dimensions 

of usability and understandability are much more difficult to interpret in this context. There is a 

great overlap of these two definitions with the comprehensibility measure (Press et al., 2015; 

Zhang & Adipat, 2005) because in order for a system to be easily learnable – sometimes used 

interchangeably with usable and understandable it should be also comprehensible by definition. 

Some literature sources (Arrieta et al., 2019) suggest that the main distinction between the two 

terms is that understandability focuses on the clarity of the model’s function, while 

comprehensibility emphasizes the clarity of the knowledge the model has learned (Arrieta et al., 

2019). In that case understandability is crucial for the developers of the AI systems while it is not 

relevant for the clinicians. The remining dimension is difficult to satisfy due to broad definition of 

usability. In the context of this study, the best indirect measure of usability could be the time spent 

on each explanation. It is due to the fact that time seems to be the best proxy for the cognitive load 

which is used in the usability studies and in evaluating XAI explanations (Herm, 2023). In that 

case again Shap would be the most usable, Araucana would be still usable but would require more 

cognitive resources. On the other hand, Bayesian network would require too much cognitive effort 

and was not analysed in detail by the clinicians. The evidence for it is revealed by the think-aloud 

session providing clear evidence that the underlying reasoning of Shap and Araucana are reflected 

in the decision-process (Table 12 id 2 & 3). On the other hand, the reasoning process for the 

Bayesian network is not reflected in clinicians’ expressions (Table 12 id 1 & 10). They express 

rather the lack of understanding and lack of intuitiveness of the method. Therefore, both Shap and 

Araucana can be classified as understandable and Bayesian network in its present form as not 

understandable. It is in line with the cognitive load paradigms and usability research (Sagar & 

Saha, 2017; Zytek et al., 2021). The three methods are based on two different operations: Shap 

requires addition and subtraction, on the other hand Araucana and Bayesian network require 

evaluation of conditional statements. Even though direct cognitive load studies have not compared 

addition and evaluation of conditional statements, addition is intuitively less cognitively 

demanding. This is due to the multiple steps involved in each conditional step requiring 

remembering the thresholds and comparing the test result of the patient with the thresholds. Each 

of these steps increases the cognitive load, making the task more intricate (Sweller, 1988). 

Addition is generally more straightforward, particularly when working with smaller numbers or 

simple sums. 



Reiterating on the definitions of usability and interpretability (Figure 37), they represent a difficult 

cognitive-load trade-off. Usability tries to minimize the cognitive-load while greater 

interpretability would often result in cognitive load increase. For example, in complex problems it 

might not be possible to make the explanation complete and at the same time easily readable for 

the user. In these cases, additional training might be necessary to equip the clinicians with 

necessary skills to interact with more complex explanations. However, it requires first the 

awareness and willingness of the physicians to adopt new techniques and making the explanations 

as usable and intuitive as possible while still retaining the adequate complexity of XAI.  

The experiment design did not compare the agreement with the explanations separately. However, 

it could be easily speculated that higher usability would directly increase trust and agreement with 

the system (Cabitza et al., 2023). Unfortunately, it might be also illusory in the case of XAI. For 

example, the clinicians which participated in the think-aloud session expressed the 

understandability of Shap and Araucana but at the same time showed very high compliance rates 

(90%) on average. It suggests that simply increasing the usability of the system and explanations 

without additional measures mitigating over-reliance could inadvertently significantly increase the 

over-reliance automation bias. 

The results clearly point out that Bayesian network and Araucana require more time to be 

understood but their explanations convey more complex information about relationships between 

the parameters. Therefore, if more complex causal links are important for a clinical decision, using 

simple summation explanations such as Shap could be very misleading and lead to clinical errors. 

Another often overlooked issue is the timing and frequency of explanation requests from the 

system. Naïve and occasional users typically need frequent explanations at various stages of using 

the AI system, whereas experienced users, who integrate the system into their daily clinical 

routines, may need explanations less often, focusing on rare or unexpected situations. The level of 

detail and duration of these explanations can also vary, depending on the specific needs of different 

stakeholders in various contexts and with different objectives (Combi et al., 2022). 

Additionally, lower levels of explainability can be acceptable in scenarios where they do not 

increase the risk of patient morbidity or mortality, such as the design of the disease screening tests 

with high false positive rates. Therefore, when the stakes are low, a lack of explainability can be 



tolerated, and the level of explainability is proportional to the stakes of a decision (Arbelaez Ossa 

et al., 2022; Zytek et al., 2021). 

As previously discussed, XAI itself used in an inappropriate way can cause more harm than good 

for example increasing confidence in a faulty system (Cabitza et al., 2022, 2023). It is not a simple 

solution to AI transparency problems. XAI techniques can be faulty as they can be misled by 

adversarial attacks or noise, and discrepancies may exist between the explanation and the actual 

model behaviour. Users may struggle to understand good explanations and fall prey to biases like 

confirmation bias, but proper training and well-designed interfaces can address these issues, 

similar to managing biases in conventional medical procedures. The lack of objective measures 

for explainability makes it hard to assess XAI techniques, necessitating more research and 

interdisciplinary efforts to establish reliable evaluation methods. While XAI may work better on 

an aggregate level, individual-level explanations can be useful for certain data types like EHR, 

requiring continuous monitoring and oversight to detect and address unforeseen issues. XAI should 

not replace evidence-based evaluation methods but foster support in medical practice. There is no 

doubt that XAI can help to uncover biases and improve understanding of AI predictions when used 

correctly (Cinà et al., 2022). 

Moreover, different stakeholders can benefit from XAI in different ways. XAI techniques can 

support various professionals using AI tools, such as developers, medical experts, and regulators, 

each with distinct explainability needs. While these techniques are beneficial for trained 

professionals like developers and clinicians, they should be fine-tuned. In a similar fashion a 

system tailored to a particular setting and user group cannot be easily transferable to another setting 

without re-evaluation (Cinà et al., 2022). 

 

 

  



Conclusion 

 

The combination of survey data and think-aloud protocols offers a robust understanding of 

clinicians’ interactions with these tools, highlighting both their strengths and areas for 

improvement. 

While the survey reflected the aware assessment of the methods, think-aloud captured the 

cognitive reasoning while interacting with XAI and cognitive load through time measurement. The 

cumulative evidence collected through the comparison of self-reported experience, time 

measurement and analysis of sentiments paints a clear picture of the assessed XAI methods. 

Clinicians generally trusted the system as well as the explanations and found the model’s 

predictions trustworthy and relevant (Table 13 H1). However, a significant remaining challenge is 

reconciling human-ML disagreements, reflected in high compliance (Table 13 H2). The specific 

experimental design of case presentation used provides further insight of compliance. The cases 

were always presented in blocks of few TP and TN patients first in order to prevent the inadvertent 

bias a clinician might have seeing FP and FN cases first. The goal was achieved but also the 

opposite effect was observed – the over-reliance or automation bias. 

Comparisons of XAI explanations show consistent differences between the methods reflected in 

measured parameters (Table 13 H3). The results indicate that Shap is generally considered more 

comprehensible, helpful and usable than Araucana comparing self-reported comprehensiveness, 

helpfulness and cognitive load. Bayesian network received significantly lower scores for all three 

measures. Including the evidence from the think-aloud utterances it can be considered as not 

usable. This discrepancy needs further investigation, particularly in the graphical structure of 

Bayesian networks and their usability. The study suggests that better design and education could 

improve the usability of Bayesian networks, but they would require more cognitive effort and 

additional training in contrast to more self-explanatory methods like Shap and Araucana. Further 

research is needed to pinpoint the detailed factors affecting usability. 

  



Table 13. Final hypotheses evaluation. 

Hypotheses Evaluation 

H1: General Perception: Clinicians generally perceive human-AI 

collaboration tools as positive and trustworthy in the medical setting. 
Accepted 

H2: Compliance: Significant proportion of the compliant decisions are 

incorrect, indicating potential over-reliance on the XAI system. 
Accepted 

H3: Method Comparison: there are significant differences in 

comprehensibility, helpfulness and cognitive load  measures among Shap, 

Araucana tree and Bayesian network. 

Accepted 

H4: Sentiment Analysis (emotional tone): Sentiment analysis reveal 

differences in the emotional tone between Shap, Araucana tree and 

Bayesian network mirroring the perceptions found with the use of the 

survey. 

Partially 

accepted 

H5: Department Comparison: There are significant differences in tool 

perceptions and preferences between ER and ID departments, with ER 

clinicians preferring tools that provide rapid, comprehensible explanations 

and ID clinicians preferring tools that offer more detailed, in-depth 

explanations. 

Rejected 

H6: Pair Comparison: Within allocated clinician pairs, there are consistent 

patterns in comprehensibility and helpfulness ratings, reflecting similar 

perceptions and preferences of clinicians from ER and ID departments 

while assessing same patients and corresponding XAI explanations. 

Rejected 

H7: Sentiment Analysis (suitability): General purpose sentiment analysis 

models are suitable for assessing emotional tone towards XAI tools in the 

medical setting. 

Partially 

accepted 

H8: Explainability Assessment: Studied tools can be fit into theoretical 

frameworks and highlight the need for theoretical and empirical studies 

being conducted together. 

Accepted 

 

 

 



The overall preferences is mostly driven by the clinicians from the ID department which show 

strong preference for Shap, moderate preference for Araucana and very low preference for 

Bayesian network. On the other hand, clinicians from the ER department show high preferences 

for both Shap and Araucana and moderate preference for Bayesian network. Shap can be 

considered as the least complex explanation out of three due to its additive nature compared to 

conditional reasoning necessary to extract the meaningful information from the Araucana tree or 

Bayesian network. It suggests that if a problem at hand is relatively simple and linear, Shap is a 

preferred XAI approach. On the other hand, Araucana would be more appropriate for explaining 

problems that require more complex non-linear operations. Unlike previously hypothesized ID 

department showed preference for fast and intuitive method – Shap and ER for more in-depth 

explanations Araucana and Bayesian network. (Table 13 H5).  

Sentiment analysis median and spread results showed a similar pattern to self-reported measures 

reflecting the differences between the departments. However, it would require more participants 

and further fine-tuning to provide conclusive evidence  (Table 13 H4). The limitation of the study 

was a relatively small number of participants which does not allow for generalization of the results 

and hindered statistical analyses with only two clinicians. Therefore, also the acceptance of the 

general purpose sentiment analysis models in medical setting cannot be fully confirmed without 

further research (Table 13 H7). However, presented preliminary results indicate a great potential 

for semi-automated sentiment analysis with general-purpose sentiment models. 

Fitting the results into the 4 dimensional explainability framework (Table 13 H8), three dimensions 

seem to be relevant for XAI users: usefulness, interpretability and usability. Based on the results 

Shap achieved the highest explainablity, Araucana slightly lower and Bayesian network can be 

considered as not explainable. Two key dimensions – interpretability and usability – are in 

opposition to each other. suggesting a difficult cognitive load trade-off in making the explanations 

sufficiently interpretable and complete without hindering their usability . However, this trade-off 

cannot be definitely solved and has to be fine-tuned based on the specific needs such as time 

constraints, stakes of the decision and user expertise to name few. The frameworks for 

classification of task complexity and requirements gathering should be further investigated in the 

context of XAI DSSs. 

 



This study provides a comprehensive evaluation of various XAI tools, highlighting significant 

differences in their usability and clinician preferences. The acceptance of hypotheses related to 

general perception, compliance and method comparison underscores the reliability and relevance 

of the findings. The combination of survey data and think-aloud protocols offers a nuanced 

understanding of how clinicians interact with these tools, revealing both strengths and areas for 

improvement. The findings emphasize the importance of tool design and education, particularly 

for more complex methods like Bayesian networks. Future research should focus on refining these 

tools to reduce cognitive load and improve usability, possibly through targeted training and 

adjusted graphical design. 

 

Future directions 

The future directions are multiple. Reconciling human-ML disagreement is an urgent issue. A 

valuable insight could be gained by performing a similar experiment but presenting the XAI 

explanations only for the difficult cases. This could prevent the clinicians from getting used to 

seeing the explanations being correct multiple times and it might be the easiest and the most 

effective way for decreasing over-reliance.  Generally, large-scale studies with larger sample sizes, 

investigating long-term effects in XAI-collaboration have yet not been conducted. Additionally, 

recruitment of clinicians from varying institutions could provide greater generalizability in the 

future. As to XAI itself, many experts suggest that the ultimate explanation adapted for human 

cognition will be in the textual format leveraged by large language models (Mavrepis et al., 2024). 

They offer easily accessible and comprehensible help without the need for special training for the 

clinicians to use them. They require low cognitive effort which can both speed up decision making 

and make the usage more satisfactory (Michalowski et al., 2024). Clever integration of visual and 

textual explanations might be the ultimate solution allowing for more flexibility and completeness 

increasing interpretability and usability. It is potentially a solution to account for individual 

differences between the clinicians and varying levels and domains of expertise in dynamic 

healthcare settings. Additionally, sentiment analysis presents as an objective and quantitative way 

to evaluate XAI in terms of user experience which is the next step for XAI implementation in 

healthcare. 
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Appendix 

1.1 Initial Questionnaire 

The following figure represents the initial questionnaire structure and layout (Figure 38). It was 

utilized to collect demographical data and general attitudes towards AI in healthcare. 

 

Figure 38. Initial questionnaire  



1.2 Survey Questionnaire 

The following series of figures represent the introduction and the example of the layout of one 

patient and corresponding explanations – Shap, Araucana and Bayesian network (Figure 39). 

 

 

 











 

Figure 39. Survey layout example 


