

DEPARTMENT OF ECONOMICS AND MANAGEMENT

MASTER PROGRAMME IN

ECONOMICS, FINANCE AND INTERNATIONAL INTEGRATION

--

APPLICATION OF

MACHINE LEARNING

TO QUANTITATIVE

TRADING

Supervisor:

Prof. GIUDICI PAOLO STEFANO

Student:

PHAN TIEN DUNG

Matr. n. 472423

Anno Accademico 2023-2024

Dichiarazione di originalità: Con la presente dichiaro di aver redatto autonomamente

la presente tesi di laurea magistrale utilizzando solo gli strumenti indicati e che tutte le

parti che, nel testo o nel contenuto, sono tratte da altre opere sono state chiaramente

identificate come citazioni, con l’indicazione delle relative fonti. Questa tesi di laurea

magistrale non è stata presentata in alcun altro corso di studio come prova d’esame, né in

forma identica né simile.

Declaration of Originality: I hereby declare that I have independently written this

master’s thesis using only the tools indicated, and that all parts that, in text or content,

are derived from other works have been clearly identified as quotations, with the relevant

sources cited. This master’s thesis has not been submitted in any other course of study as

an examination work, neither in identical nor similar form.

Phan Tien Dung (Matriculation Number 472423), September 7, 2024

Abstract

This thesis explores the application of Machine Learning in Quantitative Trading. It

primarily focuses on how Machine Learning techniques can be used to develop

algorithmic trading strategies within financial markets. The Machine Learning models

employed range from classical approaches like Logistic Regression and Support Vector

Machines to more advanced methods such as Recurrent Neural Networks, Long

Short-Term Memory networks, and Gated Recurrent Units.

The models were tested using approximately 20 years of stock price data from

International Business Machines Corporation (IBM), spanning from January 2000 to

March 2021. This period was divided separately into two segments: a training phase

from January 2000 to February2019, used to build the Machine Learning models, and a

testing phase from February 2019 to March 2021, used to validate them.

The thesis highlights two popular Machine Learning tasks: regression and classification.

Logistic Regression and Support Vector Machines are presented as classification models,

where the output serves as a trading signal for the stock. In contrast, Recurrent Neural

Networks, Long Short-Term Memory networks, and Gated Recurrent Units are used as

regression models, where the output predicts the next price of the stock. An additional

step is required to interpret this predicted price as a trading signal.

Furthermore, all model-based strategies are evaluated for effectiveness using an intraday

vectorized backtest, which provides visual evidence of each strategy’s profitability and

risk management through equity curves and maximum drawdown metrics. The thesis

also considers metrics such as hit rate and the rate of false positions, combining them

with the equity curves to offer a comprehensive assessment of each strategy’s overall

efficacy. Particularly, the research paid attention to the safety AI solutions in different

aspect like: Accuracy, Robustness, Fairness and Explainability.

Keywords: Machine Learning, Deep Learning, Quantitative Trading, Algorithmic

Strategies, Backtesting, Maximum Drawdown, Risk Management, Trustworthiness AI

Astratto

Questa tesi esplora l’applicazione del Machine Learning nel Trading Quantitativo. Si

concentra principalmente su come le tecniche di Machine Learning possano essere

utilizzate per sviluppare strategie di trading algoritmico nei mercati finanziari. I modelli

di Machine Learning impiegati spaziano da approcci classici come la Regressione

Logistica e le Macchine a Vettori di Supporto a metodi più avanzati come le Reti Neurali

Ricorrenti, le Reti Neurali Long Short-Term Memory e le Gated Recurrent Units.

I modelli sono stati testati utilizzando circa 20 anni di dati sui prezzi delle azioni della

International Business Machines Corporation (IBM), che vanno da gennaio 2000 a

marzo 2021. Questo periodo è stato suddiviso in due segmenti: una fase di

addestramento, da gennaio 2000 a febbraio 2019, utilizzata per costruire i modelli di

Machine Learning, e una fase di test, da febbraio 2019 a marzo 2021, utilizzata per

convalidarli.

La tesi evidenzia due compiti popolari del Machine Learning: la regressione e la

classificazione. La Regressione Logistica e le Macchine a Vettori di Supporto sono

presentate come modelli di classificazione, in cui l’output serve come segnale di trading

per il titolo azionario. Al contrario, le Reti Neurali Ricorrenti, le Reti Neurali Long

Short-Term Memory e le Gated Recurrent Units sono utilizzate come modelli di

regressione, in cui l’output prevede il prezzo futuro del titolo. È necessario un passaggio

aggiuntivo per interpretare questo prezzo previsto come segnale di trading.

Inoltre, tutte le strategie basate sui modelli sono valutate per efficacia tramite un backtest

vettorizzato intraday, che fornisce prove visive della redditività e della gestione del

rischio di ciascuna strategia attraverso curve di equità e metriche di drawdown massimo.

La tesi considera anche metriche come il tasso di successo e il tasso di posizioni errate,

combinandole con le curve di equità per offrire una valutazione complessiva

dell’efficacia di ciascuna strategia. Particolarmente, la ricerca ha posto attenzione alle

soluzioni di sicurezza nell’IA sotto diversi aspetti, come: Accuratezza, Robustezza,

Equità e Spiegabilità.

Parole chiave: Machine Learning, Deep Learning, Trading Quantitativo, Strategie

Algoritmiche, Backtesting, Maximum Drawdown, Risk Management, Trustworthiness

AI

Acknowledgments

This thesis represents the culmination of years of study, research, and personal growth,

all of which would not have been possible without the guidance, instruction, support, and

opportunities afforded to me by several individuals and institutions.

First and foremost, I would like to extend my deepest gratitude to Prof.Dr. Paolo

Giudici, whom I first encountered during my time in the Data Science course in 2018 in

my Master’s Degree at the University of Pavia. That was the very first time in my life I

had known that, students in Economics or Finance can themselves code programms.

From the very beginning, his passion for quantitative analysis and its practical

applications left a profound impression on me. Through his teachings, I gained a solid

understanding of mathematics, statistics, and their critical roles in the fields of

economics and finance. Prof. Giudici ’s ability to bridge complex theoretical concepts

with real-world scenarios was nothing short of inspiring, and it is no exaggeration to say

that he was instrumental in laying the foundation for my career in Quantitative Finance.

His mentorship not only deepened my knowledge but also sparked my interest in

pursuing a career in this field. The insights he shared with me about the world of

Quantitative Finance have guided me to where I stand today in my professional journey

als a Quant Analyst. For this, I am forever grateful.

Additionally, I would also like to express my sincere appreciation to the Double Degree

program, which provided me with an exceptional opportunity to broaden my horizons by

living and studying in two different countries: Italy and Germany. This unique

experience enriched my academic and personal life in ways that I could never have

imagined. The chance to immerse myself in the diverse cultures, educational systems,

and perspectives of these two countries has been truly transformative. I owe a great deal

of thanks to the supporters, administrators and particularly, Mr. Federico Franceschini,

Double Degree coordinator, who facilitated this program, making it possible for students

like me to benefit from such an invaluable international experience.

During my time at the University of Tübingen, I was fortunate to have been under the

guidance of Prof.Dr. Martin Biewen, whose supervision was crucial to the successful

completion of this thesis. Prof Biewen’s expertise, patience, and thoughtful feedback

were instrumental in shaping the direction and quality of my research. His

encouragement and advice helped me navigate through the various challenges of my

thesis, and for this, I am deeply thankful.

While my original plan was to graduate earlier, unforeseen personal circumstances

required me to extend my studies. Although this delay was not part of my initial plan, it

provided me with the opportunity to further refine my research and gain additional

insights that I might not have otherwise encountered. In this regard, I would like to

express my heartfelt thanks to the University of Pavia for their understanding and

support during this time. The city of Pavia, with its rich history and welcoming

community, became a second home to me, offering me not just an academic environment

but also a nurturing space for personal growth. My time at Pavia marks a significant

1

chapter in my life, one filled with learning, self-discovery, and cherished memories. I am

truly grateful to both the university and the city for everything they have given me.

In closing, this thesis is a testament not only to my hard work but also to the support,

guidance, and opportunities provided by many individuals and institutions along the way.

To everyone who has been a part of this journey, I extend my deepest gratitude. Thank

you for helping me reach this important milestone in my life.

2

Contents

Part 1: Introduction and Trading Motivations 6
Chapter 1: Introduction

1.1 Why do people love trading? . 6

1.2 Research aim and objective . 8

1.3 Thesis structure . 9

Part 2: Literature Review and Methodologies Development 10
Chapter 2: Theory and Literature Review

2.1 The theory of machine learning methodologies 11

2.1.1 From time series to supervised learning 11

2.1.2 Model selection by cross-validation 12

2.1.3 Stable models with `2 regularization, Lipschitz or Smoothed loss

function . 14

2.2 The theory of machine learning algorithms 15

2.2.1 Logistic Regression . 15

2.2.2 Support Vector Machine . 16

2.2.3 Deep Learning . 17

2.2.3.1 The Recurrent Neural Network algrorithm 18

2.2.3.2 The Long Short Term Memory algorithm 20

2.2.3.3 The Gated Recurrent Unit algorithm 22

Chapter 3: Methodologies Development and Data Scope

3.1 Details in methodology development . 24

3.2 Models estimations . 26

3.3 Data Sources and Data-Fetching Tools. 26

3.3.1 Python as a versatile tool for Deep Learning 26

3.3.2 Public Financial Data Source . 27

3.3.3 Statistics descriptive of data . 28

Part 3: Empirical Results, Trustworthiness in AI Finance and
Conclusion 30
Chapter 4: Empirical Results

4.1 Empirical results of deep learning-based algorithms 31

4.2 Results of two classical Machine Learning models 42

Chapter 5: Trustworthiness in AI-based Solutions in Finance

5.1 What is safe machine leanring and how trustworthy are AI models? 49

5.2 AI models trustworthiness methodology 50

5.3 How reliable and trustworthy are our models ? 51

Chapter 6: Conclusions

6.1 General Conclusions . 57

6.2 Research Implications . 58

6.3 Further research recommendations and suggestions 59

3

APPENDIX 61

Mathematical Proofs . 61

Manipulation and Computation Code Snipets in Python 62

Visualization Snipets of Code in R . 87

REFERENCES 113

4

List of Figures

1 The pseudo cross-validation of a chronological supervised learning form . 13

2 The unfolding architecture of the Recurrent Neural Network 20

3 The unfolding architecture of the Long Short Term Memory 21

4 The unfolding architecture of the Gated Recurrent Unit 22

5 The original stock price of IBM from January 2000 to March 2021 29

6 The original stock price of IBM and its predicted value by RNN 32

7 The original stock price of IBM and its prediction by LSTM 33

8 The original stock price of IBM and its prediction by GRU 34

9 The long position by RNN-based strategy 35

10 The long position by LSTM-based strategy 36

11 The long position by GRU-based strategy 37

12 Equity Curve of buy & hold and RNN-based stragtegy 38

13 The equity curve of buy & hold and LSTM-based strategy 39

14 The equity curve of buy & hold and GRU-based strategy 41

15 The long position by Logistic Regression-based strategy 43

16 The long position by SVM-based strategy 44

17 The equity curve of buy & hold and Logistic Regression-based strategy . 45

18 The equity curve of buy & hold and SVM-based strategy 46

19 Features Explanation of LSTM model 53

20 Features Explanation of RNN model . 54

21 Features Explanation of GRU model . 55

22 Features Explanation of SVM model . 55

23 Features Explanation of Logistic model 56

List of Tables

1 The pseudo supervised learing from converted from a time series data . . 11

2 The statistical summary of the IBM’s stock price during the whole period 28

3 The statistical summary of the IBM’s stock price during the training period 28

4 The statistical summary of the IBM’s stock price during the testing period 28

5 The root-mean-square error of the forecast of IBM’s stock price of RNN,

LSTM, and GRU model . 33

6 The hit rate of RNN, LSTM, and GRU-based strategy 35

7 The rate of false position of RNN, LSTM, GRU-based strategy 37

8 Key summaries of RNN-based and the Buy and hold strategy 39

9 Key summaries of LSTM-based and the Buy and hold strategy 40

10 Key summaries GRU-based and the Buy and hold strategy 41

11 The hit rate of LR and SVM-based strategy 43

12 The rate of false position of LR and SVM-based strategy 44

13 Key summaries of LR-based and the Buy and hold strategy 46

14 Key summaries of SVM-based and the Buy and hold strategy 47

15 Key summaries of all trading strategies 47

5

Part 1: Introduction and Trading Motivations

Chapter 1: Introduction

1.1 Why do people love trading?

Why do people love trading? The main reason was absolutely the profit. Sebastien and

Sourva (2019) have agreed that once upon a time, trading is an indispensable part of

humankind, people often bought raw materials at a low price and attempted to sell at a

higher price to earn a profit. Later, the rich Romans used the Roman forum to exchange

currencies, bonds, and their investment. The earliest form of the stock exchange was

created in Antwerp, Belgium in 1531. In there, traders frequently met and exchanged

promissory notes or bonds. However, the tale of the stock exchange only began when a

group of 24 brokers signed the Buttonwood Agreement in 1790, bounding the group to

trade with each other under specific rules. After that, the stock exchange kept evolving

significantly and continuously in complexity and scope. Nonetheless, it still stayed

unchanged conceptually. At that time, the stock exchange was still a trading venue

where buyers or sellers screamed, yelled, and used hand signals to place positions of

traded products. In detail, the hand signal as palm facing out and hands away or palm

facing in and hands holding up used as an indicator of a long or short position

respectively. Later, thanks to telegraph’s technology, the financial market had begun a

new chapter, putting an end to the physical venue. Changes only came in 1971 when the

NASDAQ stock exchange launched a completely electronic system. It means the whole

trading process can be handled systematically in the blink of an eye. And this,

undoubtedly, is the main driver leading to the regime of algorithmic trading, which has

been widely implemented nowadays.

Robert (2021) and Raja, Maxence, and Daniel (2020) have defined that algorithmic or

quantitative trading as the computerized execution of traded financial products as stocks,

bonds, funds, or a plethora of derivatives, following predefined instructions. Compared

to human-driven trading, this style is more consistent and efficient in execution while

enjoying lower transaction costs. Commonly, quantitative trading falls into two main

categories, say rule-based and predictive modeling approach. While the investor needs to

determine exactly the rule of trade in the rule-based approach, for instance, if the

short-term moving average of a given traded product goes over the long-term moving

average then place a long position, the latter employs mathematically sophisticated

models to figure out the hidden patterns from historical data. A predictive model

emphasizes historical data and attempted to discover the hidden patterns that tend to

repeat frequently. Consequently, the model can exploit the valuable signals, which will

be converted into long or short positions scientifically. That is the reason why Machine

Learning jumps into, and in this framework, only the predictive modeling approach will

be discussed.

According to Aurélien (2019), Machine Learning is the field that utilizes statistical

analysis, probabilistic programming, mathematics, and computer science to exploit

6

hidden patterns in the huge amount of data. This is one of the fastest-growing areas

recently and has a profound application in practices, ranging across fields in business and

technology as image detection or autonomous car. Quantitative Finance or Trading is not

an exception. In quantitative finance, Matthew, Igor, and Paul (2020) have pointed out

that machine learning offers various applications, such as price prediction by deep

learning, optimal execution by reinforcement learning, optimizing trading strategy, risk

management, or signal detection amongst noisy datasets. Machine learning employs

algorithms that can learn how to perform tasks like classification or regression without

explicitly too much being programmed. These can be various, including from classical

statistical models such as linear regression to more complex as a fully–connected neural

network. Machine learning, nowadays, is ever-improving, and gain popularity in

quantitative finance. It attracted the huge attention of large quantitative funds or other

financial institutions like World Quant, Renaissance Capital Management, Citadel, or

Two Sigma.

Aurélien (2019) has proposed a couple of reasons why machine learning is gaining

popularity in the recent regime. Firstly, thanks to its simplicity, programming is

increasingly easily accessible to a wider public compared with the past. For instance, in

the spam email detection problem, machine learning automatically can learn which

words will be contained in the spam email given a labeled data, therefore, this program is

much shorter and less complicated than traditional methods. Also, with the trend

towards increasingly computational resources and free large datasets, accessing,

wrangling, and manipulating the data is easier than ever, therefore, it has been a crucial

force behind the dramatic performance improvement of machine learning that is driving

innovation across many industries, particularly in finance which already has a long

history of using by-far sophisticated models in analyzing and making decisions.

Nonetheless, while enjoying many advantages, machine learning has faced a couple of

disadvantages. Matthew et al (2020) have advocated that one of the most noticeable

things is that machine learning is always considered as a black box, which only ingests

input data and produces output without explicit explanation. Matthew et al (2020) have

also argued that the absence of well-established theories and concepts in more

foundational scientific fields as financial econometrics or financial time series sometimes

makes practitioners difficult to understand or seek the optimal answers.

To this end, the thesis will present machine learning as a non-linear extension of various

topics in quantitative trading with an emphasis on how to design an automated algorithm

for financial traded products. The workflow demystifies computation, explains its

intellectual underpinnings, and covers the essential elements of machine learning in

quantitative trading. The thesis constitutes five chapters. The first chapter includes an

introduction and explanation of why machine learning gained popularity in the finance

and business industry. The second part mainly emphasized machine learning theory and

its application in designing models in quantitative trading as cross-validation,

regularization, stability, hypothesis class. In this section, the thesis will point out the

complex mathematics underpinning machine learning, and its contribution to the success

of machine learning algorithms. This could help the practitioners get rid of the “black

box” problem in machine learning. The next one will elaborate on the practical model in

7

machine learning and its application in quantitative trading as logistic, support vector

machine, recurrent neural network, the long-short term, and gated unit model. Here,

each model will be crafted from scratch, then put into an algorithmic trading context.

Also, the backtesting mechanism is discussed in this section. It will compare the

effectiveness of machine learning-based strategies and the “buy and hold” strategy.

1.2 Research aim and objective

The primary aim of this research is to investigate the effectiveness of integrating

advanced machine learning techniques, particularly neural networks, with foundational

mathematical and statistical skills to develop sophisticated trading strategies in financial

markets. With the rapid growth of computational power and the availability of large

datasets, neural networks have emerged as powerful tools capable of capturing intricate

patterns within market data that traditional statistical methods might overlook. The

research aims to harness these capabilities to enhance the accuracy of market predictions

and trading decisions. Specifically, the objectives include developing a framework that

combines neural networks with statistical methods like time series analysis and

regression models to forecast asset prices and identify profitable trading opportunities.

Moreover, this research will explore the adaptability of these machine learning models to

different market conditions, such as varying levels of volatility, and their ability to

generalize across different asset classes, including stocks, commodities, and

cryptocurrencies. Another key objective is to assess the model’s performance in both

short-term trading (high-frequency trading) and long-term investment scenarios,

providing a comprehensive evaluation of its practical applications. The study will also

focus on the interpretability of these models, ensuring that the predictions made by the

neural networks can be understood and trusted by human traders and analysts.

The integration of neural networks with traditional mathematical and statistical

approaches is expected to provide a dual benefit: the ability of neural networks to

process and learn from large, unstructured datasets, and the mathematical models’

grounding in established financial theory. Previous research has demonstrated that such

hybrid approaches can lead to improved predictive performance and more robust trading

strategies accrording to Hu et al (2020) and Hiransha et al (2018).

Additionally, the study aims to contribute to the existing body of knowledge by

addressing the challenges of overfitting, model interpretability, and computational

efficiency, which are critical for the successful deployment of machine learning models

in real-world trading environments mentioned in Heaton et al (2017) and Bao et al

(2017)

In summary, the research seeks to advance the field of algorithmic trading by developing

and testing a novel approach that combines neural networks with traditional statistical

methods. This approach aims to improve the precision and reliability of trading models,

ultimately contributing to more effective and profitable trading strategies in the financial

8

markets.

1.3 Thesis structure

This thesis is organized clearly into three comprehensive sections, each contributing to a

thorough journey of the research topic. Part 1: Introduction and Trading Motivations

opens with a detailed introduction that delves into the reasons why trading is compelling

to individuals, providing a context for the study. This section not only outlines the

research aim but also specifies the objectives that guide the entire thesis. It explains the

history of trading, earning money and the transformation of the trade work. The

introduction sets the stage for the rest of the work by offering a clear roadmap of the

thesis structure, helping readers understand the flow of the research from the outset.

Part 2: Literature Review and Methodologies Development is an in-depth examination of

the theoretical and methodological underpinnings of the research. It begins with a

discussion on the theoretical foundations of machine learning methodologies,

emphasizing the relevance of time series data and supervised learning frameworks in the

context of trading. This section thoroughly reviews various machine learning algorithms,

including logistic regression, support vector machines, and advanced deep learning

techniques such as recurrent neural networks (RNNs), long short-term memory networks

(LSTMs), and gated recurrent units (GRUs). In addition to algorithmic exploration, this

part also focuses on the development of methodologies, detailing the processes involved

in model estimations and offering an overview of the data sources utilized in the study.

Statistical descriptions of the data are provided to give a clear understanding of the

dataset’s characteristics, ensuring a solid foundation for the empirical work that follows.

Part 3: Empirical Results, Trustworthiness of AI solutions and Conclusions presents the

core findings of the research, focusing on the empirical analysis of both deep

learning-based and machine learning-based algorithms. This section provides a detailed

account of the results, offering insights into the performance and applicability of the

various models discussed in Part 2. The empirical findings are critically analyzed, with a

particular focus on their implications for the field of trading and machine learning. The

final chapter in this section synthesizes the research findings, drawing conclusions that

address the initial research aims and objectives. In this part, various aspects of the safe

AI solutions have been proposed and statistically tested. This part will give a

comprehensive overview of how reliable the complex black box models are. This will

lay a concrete foundation to develop AI solution in the future.

The thesis is further enhanced by an appendix that includes mathematical proofs and

code examples, providing additional technical details that support the main text. This

supplementary material is designed to give readers deeper insight into the methodologies

used and to facilitate replication or further exploration of the study’s findings. The thesis

concludes with a comprehensive list of references, ensuring that all sources of

information are properly credited and that readers have access to the full range of

materials that informed the research.

9

Part 2: Literature Review and Methodologies

Development

Chapter 2: Theory and Literature Review

In the following literature review, I focus on the most fundamental underpinnings in

Machine Learning and its rigorous mathematical treatment in Finance’s application.

Firstly, I will present studies that convert a given time series data into a supervised

learning form. It is of paramount importance as the time-series data, per se, is not in

supervised learning form, while most of the data in finance are time series. Hence, it will

run into trouble in implementing the supervised learning algorithms in financial data.

Secondly, I will connect the supervised learning converted previously and the

cross-validation which is the most convenient approach to model selection in Machine

Learning. Also, I notice the main difference in implementing cross-validation techniques

in chronological and non-chronological data. In the next part, I will present the rigorous

treatment of a stable Machine Learning model with some special conditions of the loss

function. The literature review additionally pointed out that if the loss function is

equipped with some particular properties, it will lead to a more stable model in practice.

The last part of the literature review mostly puts weight on the theory of the machine

learning models, ranging from classical models like Logistic Regression to Deep

Learning models as Recurrent Neural Network. This part will go through the pure theory

and explain how it works in practice.

In this section, I will attempt to use “mathematical language” to describe and explain the

algorithm. According to Shalev and Ben (2014), the best way to describe and understand

a machine learning algorithm is to characterize a hypothesis class. In other words, a

hypothesis class is a scientific extrapolation of an algorithm in which the algorithm is

determined mathematically. Also, the hypothesis is integrated seamlessly with several

relevant information as the loss function. For example, the hypothesis class of Logistic

Regression can be written as:

Hlr = σ • Qd(θ, x, b) (1)

Qd(θ, x, b) = {hθ(x) =
d∑

i=1

xiθi+b, ∀x, θ ∈ R
d, b ∈ R} (2)

σ(u) =
1

1+e-u
, ∀u ∈ R (3)

`(θ, x, y) = ey(x
′θ+b)) (4)

Where the Hlr is the hypothesis class of Logistic Regression, the mathematical notation

• could be considered as a composite operand between two or more functions.

Qd(θ, x, b) is indeed a linear combination created from two d-dimension vector x, θ and

the real intercept b. σ(u) is an activation function, and `(θ, x, y) is a loss function.

The hypothesis class of a Logistic Regression algorithm could be interpreted as, firstly, a

linear combination of the instance x and a random parameter θ is created, then that linear

combination is fed to the activation function σ(u). Ultimately, the trainable parameter θ

10

is trained during the optimization process of the loss function `(θ, x, y). It is worth

noticing that every algorithm has its hypothesis class and the loss function. For instance,

in the Support Vector Machine algorithm, the loss function is hinge loss, which is

completely different from the 01-loss, commonly used in the classification algorithm. In

this sense, the hypothesis class crafts the whole story of an algorithm ranging from

algorithm creation to the optimization process of the loss function. The target is to

optimize the generalized loss function (objective function) by a couple of conditions,

namely empirical risk minimization, structural risk minimization, or regularized risk

minimization. The main difference between the three conditions is the objective function

and its additional components. In this section, I will demonstrate some fundamental

issues and theories in designing machine learning algorithms.

2.1 The theory of machine learning methodologies

2.1.1 From time series to supervised learning

The univariate time-series data, per se, does not have a supervised learning form,

therefore, it is impracticable to directly deploy supervised machine learning algorithms.

Nevertheless, the time series can be converted from a univariate or multivariate time

series into a supervised learning form. For the sake of concreteness, assume that a

univariate time-series data is indexed from 1 to 10, with a lag equal to 3, it can be framed

in a supervised learning form by the logic: the observation indexed by 1, 2, and 3 will be

used to predict the one indexed by 4, similarly, the one indexed by 2, 3, and 4 will be

used to predict the one indexed by 5, and so on. Mathematically speaking, univariate

time-series data could be finally re-framed in a matrix X and a vector y, corresponding to

the input and output variables in a supervised learning form. The summary of the pseudo

input X and output y can be described as below:

Input Output

1 2 3 4
2 3 4 5

.

7 8 9 10
Source: Author

Table 1: The pseudo supervised learing from converted from a time series data

Ultimately, the supervised learning form of a time series is available, and from now, any

supervised machine learning algorithm could be applied for the time-series data. In the

quantitative trading context, pseudo data in table 1 could be thought as, for the

observations indexed by 1, 2, 3, the situation of the stock price is indexed by 4, and so on.

Thus, if I have all information up to now, says the observations indexed by 8, 9, 10, what

is the next situation or direction of the stock price?. There is a distinct point in the

re-framed input X and the output y. Matthew et al (2020) have warned that fact that X

and y are ordered sequentially, hence, it is impossible to change shuffle the data or use a

technique like bootstrap to increase the diversity of the data. It is one of the most

11

extraordinary of machine learning in financial and non-financial fields.

Additionally, in quantitative trading, the output y could be more flexible. It could be the

numerical number or categorical form, corresponding to price or the increase or decrease

of the price. Consequently, the classification or regression algorithms could be applied

accordingly. In the frame of the thesis, the deep learning model is regression, meaning

that I train the model from numerical variable X to a numerical variable y. The numerical

output y is a forecasted price of the given data. Consequently, the trading strategy is

established by comparing the predicted and the previous price of the given data. However,

in classical machine learning, the model is indeed a classification. The output y of these

models is nothing but a pair of (1,−1) or (up, down). It corresponds to the directional

movement of the given time-series data. In these models, it is unnecessary to interpret in

“trading language” as the output, per se, is indeed trading signal.

2.1.2 Model selection by cross-validation

Getting back to the hypothesis class mentioned previously, each combination of trainable

parameter θ and a hyperparameter represents a supervised model. Therefore, if those

parameters are not constrained, there will be indefinitely many models. Consequently,

the problem boils down to tweaking trainable parameters and hyperparameters. Shalev

and Ben (2014) also pointed out that there are two commonly used approaches, namely

Structural Risk Minimization (SRM), and cross-validation. Shalev and Ben (2014) have

already suggested the SRM approach is particularly useful when the hypothesis class

can be partitioned by countable sub-hypothesis classes H1,H2 . . . ,Hn, then the optimal

model, h∗, will be described as follow:

h∗ ∈ argmin∀h∈H[LS(θ) + εn(h)(m,wn(h)ζ)] (5)

Where ζ is a confidence parameter. The weights wi, ∀i = 1, . . . ,m, corresponds to the

sub-hypothesis Hi. The weights need to satisfy
∑m

i=1 wi ≤ 1, and

εn(m,wnζ) = suph,θ∈Hn
|LD(θ)-LS(θ)|. It is well-noted that the value of parameter

εn(m,wnζ) is the supreme value of the sequence of the difference between the true loss

and the training loss for every function h, or more precisely θ, resides in sub-hypothesis

Hn.

Shalev and Ben (2014) have given a prominent application of SRM, says the Minumum

Description Length (MDL). MDL has many applications, particularly in the Decision

and Tree algorithm. By a wise selection of the full set of weights wi, the right-hand side

of the equation (5) could be simplified. Jonh, Peter, Robert, and Martin (1996) have

given some theories and examples of SRM, however, they are quite difficult to deploy

due to the mathematical complexity. While the SRM approach is quite useful in some

cases, the right-hand side of equation (5) always finds too much pessimism in practice.

Thus, the optimal models should be sought in a more practical method, the

cross-validation.

Matthew et al (2020) have also defined that cross-validation is a method of

hyperparameters fine-tuning by rotating k-folds of the training datasets. The models will

be trained in the k-1 folds then validated in the last fold accordingly. The advantage of

12

this method is pretty straightforward. Nevertheless, it should be cautious because the

converted data, mentioned previously, contained chronological order, consequently,

some widely used techniques in cross-validation like shuffling can not be applicable.

Hence, the k-folds principle also needs to follow the sequential order of the data. Figure

1 has presented a pseudo approach of cross-validation in sequential data. It is completely

different in the cross-validation in other non-sequential data. Firstly, the kth fold

validation always follows the k-1 training part as the data is in sequential order.

Secondly, it is impossible to shuffle or bootstrap the original data. Besides, it is worth

noticing that there are two kinds of cross-validation in the time-series supervised

learning form. On the one hand, I can fix the beginning point of k-1 training part then

move forwards only the kth fold validation. On the other hand, I can move forwards with

both the training and validation. Both approaches guarantee that the validation part is

always independent of the training part and follows the sequential order of the original

data.

Trained Data

Validated Data

Type 1: Time Series Cross-Validation

Type 2: Time Series Cross-Validation

Cross-Validation of the Supervised Learning form of the Time Series Data

These are 2 examples of "4-folds" cross-validation in Time Series Data

Figure 1: The pseudo cross-validation of a chronological supervised learning form

Figure 1 has explicitly demonstrated two ways of cross-validation of the chronological

data. The choice of cross-validation is flexible. However, each way, to some extent, has

an impact on the run time of the machine learning algorithm.

13

2.1.3 Stable models with `2 regularization, Lipschitz or Smoothed loss function

In machine learning, the centerpiece is the loss function `(θ, x, y), ∀x ∈ R
d, y ∈ R and

the ability to generalize in the testing environment. The loss function `(θ, x, y) could be

explained as a penalty function in which its value receive a higher value if the algorithm

classifies inaccurately in the classification model or its breadth between in output and y
is wide in the regression model, otherwise, its value is small. Formally, the ability to

generalize a model in a new environment, which has not been exposed to before, is the

true loss. Mathematically speaking, the ability of the generalization is the magnitude of

E(LD(θ, x, y)).

The ability to generalize in an unseen environment needs to be bounded tightly. It will

help the model prevent the overfitting phenomenon as much as possible, leading to a

better and stable model in practice. Intuitively, there are a couple of definitions of the

stability of a machine learning model. Shalev and Ben (2014) have illustrated that a

model is stable if a small change in the input to the algorithm does not lead to a big

change in the output. Formally, let A is an algorithm and an m-tuple training set

S = {zi = (xi, yi)} ∀i = 1, . . . ,m, and A(S) denotes the outcome of an algorithm A
with the instances in the training set S as input. Given a training set S and an additional

observation z∗, Si denotes the training set with a replacement z∗ for zi. Therefore, the

stability of a model will be measured by comparing the loss value of the outcome A(S)
on zi to the loss value of A(S i) on zi. For sake of clarity, the stability is measured by:

`(A(Si, zi))-`(A(S), zi).

Shalev and Ben (2014) has proposed that the stability of the model has an intricate

relationship with the overfitting phenomenon, which is described as below:

E(LD(A(S))-LS(A(S))) = E(`(A(S i, zi)-`(A(S)), zi)) (6)

Where LD(A(S)) and LS(A(S)) are the true and training loss of algorithm A. The

proof of the above equation is straightforward and is given in the appendix.

Hence, the more stable the model is, the better in preventing overfitting the model is.

Consequently, the problem of stability boils down to bounding the

E(`(A(S i, zi)-`(A(S)), zi)). Additionally, if the model is stable, it can generalize better

in an unseen environment. The stability is inherited from the properties of the loss

function, that is why in this section, the loss function will be equipped with a strong

property of Lipschitz or Smoothed function and will be trained with a `2 norm

constraint. Thus, the objective function, now, is the train loss function combined with a

part of the `2 norm of the variable θ. Formally, ones will optimize the below function:

LS(θ)+
γ

2
‖θ‖2 =

1

m

m∑

i=1

`(θ, xi, yi)+
γ

2
‖θ‖2 (7)

Where γ is a regularization hyperparameter, controlling the level of regularization in the

training loss.

14

Shalev and Ben (2014) have given two very important lemmas directly linked between

the model and the loss function.

Lemma 1:

Given any algorithm A, an m-tuple (xi, yi) training data set S , the loss function `(θ, x, y)
has ρ-Lipschitz properties, in other words, `(θ, x, y) satisfies: , then ultimately, we have:

E(LD(A(S))-LS(A(S))) ≤
2ρ2

γm
(8)

Where γ is a regularization parameter.

Lemma 2:

Similar notation with Lemma 1, and f(θ) is a differentiable function, the loss function is

non-negative, then we ultimately have:

E(LD(A(S))-LS(A(S))) ≤
48β

γm
E(LS(A(S))) (9)

Where γ is a regularization parameter.

Two prominent points coming out from the above lemmas. From one side, if the value of

variable γ is increased, the bound of difference in the true and train loss function

LD(A(S))-LS(A(S))) will be more tightened. Undoubtedly, the model will be more

stable and better in preventing the overfitting phenomenon. This is a very useful property

in reality when practitioners can fine-tune the value of γ to find the optimal value. From

the other side, a higher value of γ will lead to the higher value of the training loss.

Ultimately, a proper loss function combined with an optimal regularization could lead to

an optimal model. This technique is quite useful in the cross-validation mentioned in the

last section.

2.2 The theory of machine learning algorithms

2.2.1 Logistic Regression

Logistic Regression is a machine learning algorithm learning from the business domain

X to the interval [0, 1]. The outcome of the model could be considered as the probability

of the events as the probability of the event {1,−1} or { up, down}. For instance, it could

be convenient in predicting the trend of the stock price in the future: increase or decrease.

Mathematically speaking, the hypothesis class, including mathematical expression of the

algorithm and the loss function, of the logistic regression can be defined as below:

15

Hlr = σ • Qd(θ, x, b) (10)

Qd(θ, x, b) = {hθ(x) =
d∑

i=1

xiθi+b, ∀x, θ ∈ R
d, b ∈ R} (11)

σ(u) =
1

1+e-u
, ∀u ∈ R (12)

`lr(θ, x, y) = ey(x
′θ+b)) (13)

Where `lr(θ, x, y) is the loss function, σ(u) is a sigma activation function and the

mathematical notation • is a composite operand between two or more functions.

It is straightforward to verify that the loss function, `lr(θ, x, y) in equation (13), is a

convex function with respect to θ, hence the optimization of the objective function is

quite effective. From the previous section, to be more stable and avoid overfitting at all

costs, I will introduce the regularization part in the traditional objective function:

LS(θ)+
γ

2
‖θ‖2 =

1

m

m∑

i=1

eyi(x
′

i
θ+b)

+

γ

2
‖θ‖2 (14)

Where γ is a regularization hyperparameter.

The trainable parameter θ is sought via the optimization process of the equation (14).

Thanks to the convexity of the loss function, LS(θ)+
γ

2
‖θ‖2 is a convex function as well.

Hence, the optimization process of the equation can be done easily via the numerical or

traditional method. The objective function, LS(θ)+
γ

2
‖θ‖2, could be optimized

numerically via several optimization algorithms like stochastic gradient descent or

gradient descent.

2.2.2 Support Vector Machine

Support vector machine (SVM) is a machine learning algorithm that utilizing a linear or

non-linear hyperplane to classify observations. The goal of SVM is to train a model that

assigns unseen objects into a particular category. It is achieved by creating a hyperplane

separating the business domain space, X, into two subspaces. Based on the features in a

new sample, the algorithm will place the sample into a predefined side of the hyperplane.

Roughly speaking, a half-space or hyperplane will separate a training set with a large

margin, meaning that all the observations are not only on the correct side but also far

away from the perceptron. Like a logistic regression algorithm, a support vector machine

could be used in predicting the trend of the stock price.

There are some misunderstandings in SVM and other linear classified algorithms. At a

glance, one always conceived SVM like other linear family algorithms as an individual

perceptron classification, however, there are a couple of different factors in those

16

algorithms. Firstly, SVM no longer uses the “01” loss function in constructing the

hypothesis class, instead, SVM will utilize the hinge loss function. Secondly, SVM relies

on a powerful assumption that the linear or non-linear hyperplane had a large margin

with the trained observations as much as possible. In practice, especially in quantitative

finance, the observations are very often not linearly separable, leading to the violation of

the linear separator. This leads to the soft and hard margins in the algorithm.

Mathematically speaking, the hypothesis class of the support vector machine can be

described as follow:

Hsvm = σ • Qd(θ, x, b) (15)

Qd(θ, x, b) = {hθ(x) =
d∑

i=1

xiθi+b, ∀x, θ ∈ R
d, b ∈ R} (16)

`svm(θ, x, y) = max{0, 1-y(x′θ + b)} (17)

Where `hinge(θ, x, y) = max{0, 1-y(x′θ + b) is the hinge loss function and the

mathematical notation • is a composite operand between two or more functions. From

the expression of hypothesis class of Logistic Regression and SVM, it is not difficult to

recognize the main difference between both algorithms. Firstly, SVM does not apply the

sigma activation function. Secondly, while SVM attempts to utilize the hinge loss,

Logistic Regression uses another loss function. However, there is one thing in common

between the two algorithms. That is the loss function of both algorithms is convex.

Similar to Logistic Regression, the optimization process to seek the trainable

hyperparameter θ is quite straightforward.

In order to be more stable and prevent overfitting at all costs, the objective function can

be implemented as below:

LS(θ)+
γ

2
‖θ‖2 =

1

m

m∑

i=1

max{0, 1-yi(x
′

iθ + b)}+
γ

2
‖θ‖2 (18)

Where γ is a regularization hyperparameter.

The trainable parameter θ is sought via the optimization process of the equation (18).

Thanks to the convexity of the loss function, LS(θ)+
γ

2
‖θ‖2 is a convex function as well.

Hence, the optimization process of the equation can be done easily via the numerical or

traditional method. The objective function, LS(θ)+
γ

2
‖θ‖2, could be optimized

numerically via several optimization algorithms like stochastic gradient descent or

gradient descent.

2.2.3 Deep Learning

Deep learning is a sub-branch of Machine learning utilizing a wide range architectures of

neural networks and cutting edge optimization techniques. Deep learning has power,

flexibility and is believed to be implemented effectively across many disciplines ranging

from social science to finance due to the ability to capture the non-linearity relationship

17

between variables, which classical linear-based models are not able to do that.

Deep learning has become increasingly important in the analysis of financial data due to

its ability to model complex, non-linear relationships and uncover hidden patterns within

large datasets. Financial data, characterized by high volatility and noise, presents unique

challenges that traditional statistical methods may not effectively address. Deep learning

models, particularly those based on neural networks such as Recurrent Neural Networks

(RNNs) and Long Short-Term Memory (LSTM) networks, are well-suited for

time-series forecasting, which is critical in predicting stock prices, market trends, and

economic indicators. These models can capture dependencies across time, enabling them

to make more accurate predictions by learning from past data. Additionally, deep

learning models benefit from the integration of large volumes of diverse data sources,

including historical prices, trading volumes, and even non-traditional data like news

sentiment and social media trends, to improve prediction accuracy. However, the

application of deep learning in finance also requires careful consideration of model

interpretability and the risk of overfitting, given the potential impact on trading strategies

and investment decisions as Fischer and Krauss (2018). To maximize effectiveness, deep

learning models should be combined with domain knowledge, rigorous validation, and

robust regularization techniques to ensure they generalize well to unseen data and remain

adaptable to the ever-changing financial markets.

There are various files could be utilised by deep learning, such as Computer Vision,

Medicine, Recommendation systems, or Quantitative Finance. Its application could vary

from human speech recognition, image detection to stock price prediction. The universal

of deep learning is increasingly numerous, and in the scope of the thesis, it is impossible

to integrate all of them. In this section, the general architecture of “Recurrent Neural

Network” (RNN) and its variants will be presented. Those all revolve around analyzing

financial time series, proving ideas of how they relate to the well-known technique in

financial econometrics. Deep learning has gained popularity in time-series model, for

instance, Paul (1988), Zaiyong, Chrys, and Paul (1991), Julian and Crhis (1998), Zhang

and Min (2005), Sepp and Jurgen (1997), or Guoqiang, Patuwo, and Michael (1998)

have proposed neural network time-series models in the financial or commodity market.

In this thesis, the recurrent neural network models are presented as a non-linear

generalization of the classical financial econometrics models as ARIMA(p, d, q), or

AR(p). More concretely, the RNNs will provide a picture of the non-linear relationship

between variables through time, which could be better to reflex the complexity in the

financial market.

2.2.3.1 The Recurrent Neural Network algrorithm

Generally, a simple RNN describes a function between two sequences xt, yt, and the

solution is to find a function satisfying the equation:

yt+h = f(Xt,t-j), h ≥ 1, j ≥ 1 (19)

Xt,t-j = {Xt,Xt-1, . . . ,Xt-j} (20)

Where yt+h is the output of the model, h ((h ≥ 1)) implies the number of steps ahead

forecasted in the future. Xt,t-j is the collection of lagged values of the input. It is worth

18

noticing that Xt,t-j could be multivariate time-series data. Hence, the RNN-like model

is very flexible and efficient in explaining the impact of multivariate time-series data on

different time-series data.

At a glance, people may argue that the RNN is identical to other multivariate structural

autoregressive model as AR, ARIMA, or VAR. Nevertheless, the elegant beauty lies in

the function f(x) in the equation (19). In RNN, it is more flexible than a simple linear

function. Its form could be tanh, sigmoid, or other non-linear functions. Matthew et

al (2020) have pointed out that RNNs are indeed a non-linear extension of the classical

financial econometrics model, which makes RNNs more versatile to capture the dynamic

movement of price in the captial market. Mathematically speaking, the general formula

of RNN could be presented as below:

yt+h = σ(2)(W (2)
z zt+b

(2)) + εt (21)

zt-j = σ(1)(W (1)
x xt−j+W

(1)
z zt-j-1)+b

(1)) (22)

Where zt-j , xt-j , and yt+h are hidden state variables, input, and output respectively. h

indicates the number of steps ahead forecasted in the future. While W
(1)
x is a connection

matrix between the input xt-j and the hidden state zt-j , W
(1)
z connects the hidden state

zt-j and its lagged value, and W
(2)
z bridges the hidden state zt and the output yt+h.

W
(1)
x ,W

(1)
z , and W

(2)
z are time-invariant. σ(1), σ(2) are non-linear activation functions.

The activation function σ(1)andσ(2) create the elegant beauty and complexity for the

RNN model, making the RNN model outstanding with other linear econometrics models

as AR(p), MA(q), or ARIMA(p, d, q). Finally, εt plays a role as a noise.

Figure 2 has demonstrated the architecture of an RNN model. There most interesting part

of an RNN model compared with other fully-connected neural networks is the sharing

trainable parameters mechanism. It is straightforward to verify that, in figure 2, they

all use the same matrix of coefficients from the input xt-i to the hidden states zt−i and

another same matrix of coefficients for the hidden states and its lagged values. For the

sake of clarity, a simple recurrent neural network is assumed to have a lag equal to 5,

2 hidden layers, 2 hidden unit state in each layer, and predict an individual value in the

future. Thanks to the sharing trainable parameters mechanism, the RNN model only needs

2 ·1+2 ·2+2 ·1 trainable parameters for the first hidden layer and the input, 2 ·2+2 ·2+2 ·1
trainable parameters between the 2nd and 1st hidden layer, and 2·1+1 trainable parameters

for the last layer and output. In total, the RNN needs 21 trainable paramters. In the case

of the fully-connected neural network, the model will need 5 ·5+1+5 ·5+1+1 ·5+1, which

is equal to 58 trainable parameters. Therefore, while the fully-connected neural network

needs 58 trainable parameters, the RNN only needs 21 ones. The parsimony of trainable

coefficients is always a motivation to alter the structure of the classical fully-connected

neural network. Also, less trainable parameters are likely to have less propensity to overfit

and reduce the training time.

19

xt

xt-1

xt-2

xt-3

xt-4

zt

zt-1

zt-2

zt-3

zt-4

ht

ht-1

ht-2

ht-3

ht-4

yt+j

Origial Time Series

Hidden States

Output

The "unfolding" architecture of the Recurrent Neural Network

An example of Recurrent Neural Network with lag 5, 2 hidden states in 1 hidden layer.

Figure 2: The unfolding architecture of the Recurrent Neural Network

2.2.3.2 The Long Short Term Memory algorithm

The Long Short Term Memory (LSTM) is a variant of the recurrent neural network model.

While it inherited some terminologies from simple RNN, it enjoyed a new concept of a

longer memory cell ct. In addition to the long-term memory cell ct, LSTM introduced

four gates, namely main, input, output, and forget gate. Without such gated information,

the LSTM is indeed a simple RNN. Accroding to Aurélien (2019), the architecture of

LSTM can be depicted in figure 3. Mathematically speaking, the architecture of LSTM

can be explained as below:

it = σ(Wxixt+Whiht−1+bi) (23)

ft = σ(Wxfxt+Whfht−1+bf) (24)

ot = σ(Wxoxt+Whoht−1+bo) (25)

gt = tanh(Wxgxt+Whght−1+bg) (26)

ct = ft ⊗ ct−1+it ⊗ gt (27)

yt = ht = ot ⊗ tanh(ct) (28)

20

Figure 3: The unfolding architecture of the Long Short Term Memory

Where Wxi and Whi are the connection matrices between the input xt, the previous

hidden state ht-1 and the input gate it respectively. The coefficient bi could be considered

as the intercept of the input gate. Similarly, matrices Wxf and Whf bridge the gap

between the input information xt, the previous hidden state ht−1, and the forget gate ft .

The coefficient bf could be considered as an intercept of this gate. Wxo and Who connect

the input information xt, the previous hidden state ht−1 and the output gate ot with the

intercept bo. Wxg,Whg are the connection matrices between input information xt, the

previous hidden state ht−1 and the main gate gt with the intercept bg.

Wxi,Whi,Wxf ,Whf ,Wxo,Who,Wxg,Whg, bi, bf , bo, and bg are all time-invariant. Finally,

σ(θ) and tanh(θ) is a sigma and tanh activation function, and the mathematical notation

⊗ is an element-wise product.

In figure 3, the information of the long-term memory cell ct is connected with the

previous lag ct−1 through the forget gate ft and the product of the information of the

main gate gt and the input gate it. More precisely, the information of the long-term

memory cell ct is filtered from the last one, dropping some unnecessary information

from the past, then added some more meaningful information from the gate it and gt.
Informally, the long-term memory cell ct is wise enough to take the salient information

from the past, then combined it with reliable information from the input xt and the

previous hidden state ht−1. Finally, the cell ct is filtered by a tanh activation function,

then controlled by the output gate ot before passing to the output yt.

More precisely, the workflow of the LSTM model can be followed below steps:

• Step 1: A linear combination of the input xt and the previous hidden state ht−1 is

fed to the tanh activation function, producing the value of main gate gt;

21

• Step 2: A linear combination of the input xt and the previous hidden state ht−1 is

fed to the logistic activation function, producing the value of forget gate ft;

• Step 3: Repeat step 2, but the result leads to the value of the input gate it;

• Step 4: Similarly step 3, but the result lead to the value of the output gate ot;

• Step 5: Compute the long-term memory cell ct by its past value and the information

of it, gt, and ft by the formula in (25) equation;

• Step 6: Compute the value of output yt by the value of ct with the tanh activation

and the information of ot by the formula in (26) equation.

2.2.3.3 The Gated Recurrent Unit algorithm

The Gated Recurrent Unit (GRU) is a simplified version of the LSTM. The common

things between LSTM and GRU are forgetting and controlling mechanisms where the

model dropped or added some information from the historical data. However, in GRU,

there is no extra long memory cell ct as in LSTM. Similarly, the GRU model makes use of

the gate mechanism, says controller zt, reset rt, and main gate gt. According to Aurélien

(2019), the structure of GRU can be explained as below:

Figure 4: The unfolding architecture of the Gated Recurrent Unit

Aurélien (2019) also proposed the mathematical underpinnings of GRU model as below:

zt = σ(Wxzxt+Whzht−1+bz) (29)

rt = σ(Wxrxt+Whrht−1+br) (30)

gt = tanh(Wxgxt+Whg(rt ⊗ ht−1)+bg) (31)

ht = zt ⊗ ht−1+(1-zt)⊗ gt (32)

22

Where Wxz and Whz are the connection matrices between the input information xt and

the previous hidden state ht−1. The coefficient bz could be considered as an intercept of

this gate. Similarly, the matrices Wxr and Whr bridge the input information xt and the

previous hidden state ht−1 with an intercept br. Wxg and Whg are the connection matrices

between the input information xt and a part of the previous hidden state ht-1 filter by the

value of reset gate rt. It is well-noted that all of the matrices and the intercepts, namely

Wxz,Whz,Wxr,Whr,Wxg,Whg, bz, br, and bg are time-invariant. σ(θ) and tanh(θ) are a

sigma and tanh activation function. The mathematical notation ⊗ is an element-wise

product.

The GRU model is indeed a simplified version of the LSTM model as the long-term

memory cell ct is dropped. Also, from figure 4, the information of the input xt and the

previous hidden state ht−1 only fed to 3 gates instead of 4. Moreover, the controller gate

zt not only controls the value of the previous hidden state ht−1 producing the value of ht,

but also controls the value of main gate gt through the component 1-zt. When the value

of zt is very close to 1, gt is interrupted and has no impact on the output yt, and vice versa,

when the value of zt is very close to 0, the previous hidden state ht−1 has no impact on the

output yt. More precisely, the workflow of the GRU model can be followed below steps:

• Step 1: A linear combination of the input xt and the previous hidden state ht−1 is

fed to the logistic activation function, producing the value of reset gate rt;

• Step 2: Similarly step 1, but the result leads to the value of controller gate zt;

• Step 3: A linear combination of the input xt and a part of previous hidden state

ht−1 filtered by the reset gate rt is fed to the tanh activation function, producing the

value of main gate gt.

• Step 4: A linear combination of the previous hidden state ht−1 and a part of gt
controlled by the value of 1-zt, producing the value of output yt.

23

Chapter 3: Methodologies Development and Data Scope

3.1 Details in methodology development

The 8-step procedure is employed in this reseach for any traded financial products. The

procedure can be described in details as below:

• Step 1: Split a time-series data into training and testing part;

• Step 2: Scale both training and testing part by min-max or normal measurement;

• Step 3: Convert a time series data in both parts into a supervised learning form;

• Step 4: Cross-validation in training part to seek the optimal hyper-parameters;

• Step 5: Apply `2 norm regularization to prevent overfitting phenomenon;

• Step 6: Train and validate the model in the training and testing part respectively;

• Step 7: Construct trading strategy from the results from testing part;

• Step 8: Backtesting trading strategy.

Step 1 elaborates the process of separating the whole time-series data into the training

and testing part, guaranteeing that the trained model is validated independently and can

prevent a look-ahead biased error. Additionally, the accuracy of the model in the testing

environment, which has not been exposed to before, can evaluate its ability in practice. It

is of paramount importance as it can prevent the overfitting phenomenon. Moreover, the

ratio of splitting is quite flexible, and in this scope of the thesis, 90% of the observation

for training and the rest 10% of the observation for testing. 90% of the data will be

utilized to understand IBM’s price movement and the rest 10% could be used to verify

the model. Step 2 proposed an approach to scale down the original data. In machine

learning, scaling original data play a pivotal role in the convergence of the loss function.

Also, the model will run quicker and more stable with the scaled input.

Steps 3 and 4 describe the process of bringing time-series data into the proper format and

seeking the optimal hyperparameters. As mentioned previously, the time-series data, per

se, does not have a supervised learning form, hence, any supervised learning algorithms

ranging from classical machine learning to deep learning can not apply. Fortunately, in

the scope of the thesis, I have demonstrated an effective way to convert it. As a result,

the following step, cross-validation, has been carried out easily and effectively. Besides,

in addition to trainable parameters, machine learning models always contain many

hyperparameters, which is not sought via the optimization process. The previous section

has also pointed out that cross-validation is a straightforward approach to get an optimal

hyperparameters.

According to Shalev and Ben (2014), one of the most noticeable points in designing a

machine learning model is an overfitting phenomenon, which predominantly happens in

24

real world comlex problem. Formally, overfit is the situation in which the true loss, LD(θ)
is high while its training loss, LS(θ) is low, where the train and true loss can be expressed

mathematically as:

LD(θ) = E(`(θ, x, y)) (33)

LS(θ) =
1

m

m∑

i=1

`(θ, xi, yi) (34)

Where ∀x, xi ∈ R
d, ∀y, yi ∈ R, and `(θ, x, y) is a loss function. It is well-noted that

while the variable pair (x, y) could be considered as any possible value of the input and

output, a pair (xi, yi) means the training points in our data. Thus, step 5 has proposed a

regularization technique to prevent an overfitting phenomenon. I also pointed out that the

regularization parameter γ is quite sensitive. It is a trade-off factor to balance the

training loss, LS(θ) and the true loss, LD(θ).

The model is trained in step 6 could be a regression or a classification. If the model is a

regression, implemented in the deep learning models, the outcome needs to be

interpreted in “trading language”. Fortunately, the trading interpretation is

straightforward, and it relies completely on the prediction of a given stock price. In

detail, if the predicted price is larger than the actual previous price, the machine will

assign 1, corresponding to the buy position, otherwise, the model will assign -1
corresponding to the sell position. If the model is the classification, the direct outcome of

the tested data can be considered immediately as a “trading” language. Nonetheless, it is

well-noted that “short selling” is prohibited in many stock exchanges, as a result, in the

scope of the thesis, I will not place any short position. Hence, if the trading signal is -1,

I will do nothing instead of placing a short position. Ultimately, in step 7, I will have a

full set of pseudo trading signals. This is taken into consideration as the real decision of

the investor in the trading context. This decision is completely decided by the models

and does not rely on human intervention.

Lastly, step 8 verifies the efficacy of each strategy by the intraday vectorized backtest. In

detail, if the investors go a long position, he or she will receive the total daily return no

matter what it is a positive or negative return. Via a vectorized backtest, it is easy to

conclude which strategy is better. A vectorized backtest is ubiquitous in practice due to

its simplicity and effectiveness. Also, the equity curves are exhibited showing the

accumulated profit or loss of each strategy. Additionally, I will also investigate the

drawdown indicator of each strategy. This is another important point in quantitative

trading. The drawdown implies the maximum loss of the strategy during the testing

period. It reflects the effectiveness of the model in terms of risk management. A good

drawdown indicator implies that the strategy is wise enough not to place a false position,

hence, preventing unexpected loss. Each model-based strategy is also compared closely

with the “buy and hold” strategy, which helps me to verify the better strategy between

them.

25

3.2 Models estimations

Model estimation is a critical step in the development of both machine learning and deep

learning models, where the goal is to find the best set of parameters that minimize the

error in predictions. In machine learning, models such as linear regression, logistic

regression, and support vector machines rely on well-established estimation techniques

like Maximum Likelihood Estimation (MLE) or Ordinary Least Squares (OLS). These

methods involve optimizing a predefined loss function, such as mean squared error for

regression tasks, to determine the most appropriate model parameters. On the other

hand, deep learning models, such as neural networks, require more complex estimation

processes due to their highly non-linear structures and large number of parameters.

These models typically use gradient-based optimization techniques, such as Stochastic

Gradient Descent (SGD) and its variants (e.g., Adam), to iteratively adjust weights and

biases in order to minimize the loss function. The estimation process in deep learning is

computationally intensive and often requires large datasets and substantial computational

resources. Regularization techniques like l2 regularization and dropout are also

employed to prevent overfitting during the estimation process, ensuring that the model

generalizes well to new, unseen data as Goodfellow et al (2016) and LeCun et al (2015)

have responded. The choice of estimation technique and optimization strategy is crucial

in determining the accuracy, efficiency, and robustness of both machine learning and

deep learning models in real-world applications.

3.3 Data Sources and Data-Fetching Tools.

3.3.1 Python as a versatile tool for Deep Learning

Python has established itself as a premier programming language for deep learning due

to its simplicity, versatility, and the extensive ecosystem of libraries and frameworks it

supports. One of the key reasons Python excels in deep learning is its ease of use, which

allows both beginners and experienced developers to quickly prototype, develop, and

deploy models. Python’s syntax is clean and readable, making it accessible to a wide

range of users, including those without a deep background in programming.

Furthermore, Python boasts powerful libraries such as TensorFlow, PyTorch, and Keras,

which provide high-level APIs for building and training complex neural networks. These

libraries are not only optimized for performance but also offer robust tools for

visualization, debugging, and deployment, making the development process more

efficient. Python’s extensive community support also means that developers have access

to a wealth of resources, tutorials, and pre-trained models, accelerating the learning

curve and enabling faster innovation. Additionally, Python’s integration with other tools

for data manipulation and analysis, such as NumPy, pandas, and Matplotlib, allows for

seamless data preprocessing and visualization, further enhancing its utility in deep

learning projects (Chollet (2018) and Paszke et al (2019)). Consequently, Python has

become the go-to language for deep learning, empowering researchers and practitioners

to push the boundaries of what is possible in AI.

In this research, Python proved to be an invaluable tool for handling data extraction and

26

preprocessing tasks. Utilizing Python, I accessed and retrieved data from various public

sources, such as Yahoo Financial Data through advanced libraries like pandas and

numpy. Once the raw data was obtained, I employed Python’s powerful data

manipulation libraries to clean and process it. Libraries such as pandas provided efficient

data structures and functions to handle missing values, remove duplicates, and perform

transformations necessary for ensuring data quality McKinney (2010). Additionally,

NumPy was used for numerical operations and array manipulations, allowing for the

handling of large-scale data efficiently. The preprocessing involved normalizing the data,

encoding categorical variables, and creating new features to enhance the dataset’s

suitability for analysis and modeling.

By leveraging Python’s ecosystem, I was able to streamline these tasks and ensure that

the data used for subsequent analysis and modeling was accurate, consistent, and ready

for deep learning applications. This meticulous approach to data cleaning and

preparation, facilitated by Python’s robust tools, significantly improved the performance

and reliability of the predictive models built in my research and save much time in those

steps. (Van Rossum and Drake (2009))

3.3.2 Public Financial Data Source

Public financial data sources, such as Yahoo Finance, are instrumental in providing

accessible and comprehensive financial information for both individual investors and

researchers. Yahoo Finance offers a wide array of data, including historical stock prices,

real-time market quotes, currency pairs, financial statements, and economic indicators,

making it a valuable resource for analyzing market trends and developing trading

strategies. The platform’s API allows for automated data retrieval, which can be

seamlessly integrated into financial models and analytical workflows. By leveraging

Python libraries such as yfinance or pandas datareader, users can efficiently fetch and

manipulate data from Yahoo Finance, facilitating tasks such as backtesting trading

strategies and performing statistical analysis (Yahoo Finance API (20024)). The

availability of this data in a user-friendly format supports diverse applications, from

academic research to practical investment analysis, making Yahoo Finance a key player

in the financial data ecosystem. The broad scope of data and ease of access provided by

Yahoo Finance enable users to stay informed and make data-driven decisions in the

dynamic world of finance, Yarovaya (2019)

During my research, the data used is freely published by “Yahoo Finance”, and can be

easily downloaded from their website or fetched automatically by a simple Python script.

Theoretically , the content of the thesis can apply to any financial traded products across

multiple asset classes ranging from stock and bond to forex. Nonetheless, each type of

asset needs a different rigorous treatment.

The selected sample is the stock price of an International Business Machine company. In

the thesis, the period of IBM’s stock price is from January 2000 to March 2021. The

training phase is from the beginning to February 2020, and the testing phase lasts from

February 2020 towards March 2021. The training and testing parts are not overlapped,

27

ensuring the independence of the validation of the model. Also, all steps to verify the

efficacy of the model-based strategy are evaluated only during the testing period. It is

worth noticing that the data is already in time-ordered form, hence, the testing period

needs to follow the training period chronologically. Besides, it is impossible to shuffle

data before splitting it like other machine learning techniques.

3.3.3 Statistics descriptive of data

Tables 2, 3, and 4 have come up with the statistical summaries of the whole, training, and

testing period respectively. Tables 2, 3, and 4 have illustrated that the standard deviation

(volatility) of the testing period is $ 8.05, which is by far lower than the standard deviation

during the training period. It could be a fortunate point for the process of training and

validating the machine learning model. The model has more opportunities to understand

the behaviors of the price movement during the training phase, enabling it to be wiser to

cope with the unseen situation in the testing phase.

Statistics Value Statistics Value

Mean 96.50 1st quantile 62.50
Standard Deviation 34.10 2nd quantile 91.70

Min 35.10 3rd quantile 127.60
Max 159.50 4th quantile 159.50

Source: Author

Table 2: The statistical summary of the IBM’s stock price during the whole period

Statistics Value Statistics Value

Mean 93.50 1st quantile 60.75
Standard Deviation 34.70 2nd quantile 84.05

Min 35.10 3rd quantile 128.02
Max 159.50 4th quantile 159.50

Source: Author

Table 3: The statistical summary of the IBM’s stock price during the training period

Statistics Value Statistics Value

Mean 112.92 1st quantile 118.95
Standard Deviation 8.05 2nd quantile 123.60

Min 88.78 3rd quantile 127.01
Max 147.15 4th quantile 147.15

Source: Author

Table 4: The statistical summary of the IBM’s stock price during the testing period

28

In figure 5, there are 5322 observations in total, including 4789 observations, equal to

95% of the original data, for training and the last 533 observations, equal to the last

5% of the original data. Figure 5 has shown that, during the training period, the stock

has been more volatile than compared with the testing period. IBM’s stock price rises

dramatically from around $ 35 to the peak of roughly $ 160 during the training period,

equal to approximately 357% in price appreciation. However, IBM’s stock price only

fluctuated around $ 100 to $ 140. Being more volatile during the training period and less

volatile in the testing phase is indeed an advantage. The model will have a chance to

understand what is the behavior of the surge in the price, particularly during the period

that the price skyrocketed from $ 35 to $ 160. On the on hand, the model makes use of

that valuable information to train to go long positions. On the other hand, the model uses

the information during the price depreciation, for instance around March 2017, to train

not to place buy positions. All of these , on the first side, increase the profit as much as

possible, on the other side, mitigate the loss from the downturn of the price.

Jan

2000

Jun

2001

Nov

2002

Apr

2004

Sep

2005

Mar

2007

Aug

2008

Jan

2010

Jun

2011

Nov

2012

May

2014

Oct

2015

Mar

2017

Aug

2018

Feb

2020

35

48

61

73

86

99

111

124

137

150

The original price of IBM's stock from January 2000 to March 2021

The model is trained from January 2000 to Jan 2019, and test for the rest of the period.

Train & Cross-Validate in this period

Test in this period

Figure 5: The original stock price of IBM from January 2000 to March 2021

29

Part 3: Empirical Results, Trustworthiness in AI Finance

and Conclusion

Chapter 4: Empirical Results

In this section, I will present the backtest from 02/2019 to 03/2021 over the strategies

based on machine learning models discussed earlier. I will present two main types of

strategies, namely deep learning-based strategy including RNN, LSTM, GRU, and

classical machine learning-based strategy including Logistic Regression and SVM.

Theoretically, the algorithms based on machine learning models can be applied for any

stocks or other traded financial products as Forex, Commodity, CryptoCurrency, or even

contract for difference-formed products. Nonetheless, each asset needs rigorous analysis,

and there does not exist a “panacea” for all. Here, the backtest will be performed on the

stock of International Business Machine Corporation (IBM). The model will be trained

from 01/2000 to 02/2019 then validated for the “out of sample” period from 02/2019
to03/2021, which have not been seen during the training period.

The deep learning models are trained from price to price. It means that the outcome of

the models is one step ahead forecasted price of IBM’s stock. Consequently, in the deep

learning-based strategies, I will interpret the predicted price into a trading strategy. The

strategy is straightforward. It depended completely on the predicted price of the given

stock. On the other hand, in the classical machine learning-based strategy, the outcome

is indeed the signal of strategy, for instance, the pair (1,−1) correspond to long, and

short positions respectively. In reality, “short-selling” is prohibited in some exchanges,

therefore, for the sake of fairness, “short-sell” is restricted. My rule-based strategy

contains long-only positions. The position is automatically terminated at the end of the

day after placing a long position at the beginning of the traded day. Therefore, every day

if I have a long position, I can compute the daily return. The pseudo trading strategy

based on models will create long-only positions. I also pointed out the “hit rate”

meaning that how many percent of the long position has been placed accurately.

Additionally, the equity curve is presented as evident proof of the profit or loss of each

strategy. In the equity curve, the accumulated return of the “buy and hold” and the

model-based strategy converted into compound annual growth rate term (CAGR) have

been illustrated on the daily basis. All of which are meaningful in comparing the

effectiveness of each strategy. While the backtest is quite transparent and

straightforward, it did not include slippage fee or the effect of spread, which were likely

to have a huge impact on the profit of the investment.

This section will begin with a thorough analysis of the prediction of each method. In

each method, I will illustrate the graph of the predicted and original price with the

root-mean-square error criterion. The root-mean-square error is effective in recognizing

the performance of the prediction. Of course, the smaller the root mean squared error is,

the better the prediction is. An excellent prediction also means an excellent strategy.

30

4.1 Empirical results of deep learning-based algorithms

In this section, I will present the price prediction of the stock IBM by three deep learning

models. The price will be predicted in a one-step forecast for every 10 lags during 2
years from Feb 2019 to March 2021. The prediction period will be validated

independently with the training period, which ensures that the model-based strategy can

prevent look-ahead bias and work in practice. There are some advantages of this

approach, say the investors usually have a whole picture of the traded products shortly.

Also, the model can be more flexible in that it can predict more than a one-step forecast

with a very rigorous treatment, but it is out of the scope of this thesis. The decision can

be made quite easily based on the predicted information.

At a glance, from figures 6, 7, and 8, while there are several points that the models can

not capture, for instance, during February and March 2020, the model, overall, is quite so

good in predicting the trend of the stock, especially from May 2020 towards the end of

the period. RNN can describe an overall trend of IBM’s stock price. However, the

disadvantage of all trained about is that the loss function used is the mean square error,

meaning that the model only cares about the penalty if the distance between the

forecasted and original price is wide. The model does not pay attention to the direction

of the price, which plays an important role in trading.

The workflow of this section can be considerd as a complete 3-step procedure:

• Step 1: Rigorous treatment of IBM’s stock price prediction;

• Step 2: Rigorous treatment of pseudo long position of IBM’s stock;

• Step 3: Rigorous treatment of equity curves of model-based strategies and the buy

and hold strategy.

Firstly, I present a rigorous treatment of IBM’s stock price prediction by RNN, LSTM,

and GRU model. Figures 6, 7, and 8 have shown the prediction of IBM’s stock price. At a

glance, all of the graphs posed similar patterns, however, they have different levels of the

root-mean-square error, which is a popular criterion in time series forecast. Undoubtedly,

the smaller the root-mean-square error is, the better the model is. Although all of the

models could not capture 100% of the movement of IBM’s stock price, the models could

predict very well the main trend of the stock price

31

Original price of IBM

Predicted by RNN

Feb

2019

Mar

2019

May

2019

Jul

2019

Aug

2019

Oct

2019

Dec

2019

Jan

2020

Mar

2020

May

2020

Jun

2020

Aug

2020

Oct

2020

Nov

2020

Jan

2021

90

103

116

129

142

The original price of IBM and Its prediction by RNN model

The model predicted IBM price from 02/2019 to 07/2020

Figure 6: The original stock price of IBM and its predicted value by RNN

In detail, the models could understand the uptrend and downtrend of the price

movement, particularly during a plummet in the price during March 2020. This is one of

the advantages of the deep learning model in forecasting time series data. As mentioned

previously, a recurrent neural network and its variants are indeed a combination of

non-linear activation functions, connecting the time-series input, hidden states, and the

output. Formally, the model attempts to connect all chronological events by non-linear

functions, which enable the models outstanding in understanding the behavior of the

time-series data, particularly in the financial market. This mechanism is completely

different from the AR(p), MA(q), or ARIMA(p, d, q) models where all chronological

events are connected by a linear function.

Figure 6 posed a one-step forecast of IBM’s stock price with a lag equal to 10. Formally,

during the testing period, for every 10 timestamps, I will produce a one-step forecast. This

procedure will be rolled over till the end of the testing period. This technique ensures that

I have a full set of predictions from Feb 2019 to March 2021 blundering like look-ahead

bias error. The prediction in figures 6, 7, and 8 posed the root mean square error of $ 2.40,

$ 2.34, and $ 2.36 of the RNN, LSTM, and GRU models respectively.

32

Original price of IBM

Predicted by LSTM

Feb

2019

Mar

2019

May

2019

Jul

2019

Aug

2019

Oct

2019

Dec

2019

Jan

2020

Mar

2020

May

2020

Jun

2020

Aug

2020

Oct

2020

Nov

2020

Jan

2021

90

103

116

129

142

The original price of IBM and Its prediction by LSTM model

The model predicted IBM price from 02/2019 to 07/2020

Figure 7: The original stock price of IBM and its prediction by LSTM

The summaries of the root-mean-square error of each model can be described as below:

Model RMSE

RNN 2.40
LSTM 2.34
GRU 2.36

Source: Author

Table 5: The root-mean-square error of the forecast of IBM’s stock price of RNN, LSTM,

and GRU model

The root-mean-square error of the LSTM model reached the lowest level, meaning that

LSTM model has the highest precision in prediction, followed by GRU and RNN model.

Secondly, upon the completion of the price prediction, the interpreted strategy is

straightforward. If the predicted price is greater than the previous price, I will place a

long position, otherwise, I would do nothing. It is well-noted that “short sell” is

restricted in several stock exchanges in practice.

33

Original price of IBM

Predicted by GRU

Feb

2019

Mar

2019

May

2019

Jul

2019

Aug

2019

Oct

2019

Dec

2019

Jan

2020

Mar

2020

May

2020

Jun

2020

Aug

2020

Oct

2020

Nov

2020

Jan

2021

90

103

116

129

142

The original price of IBM and Its prediction by GRU model

The model predicted IBM price from 02/2019 to 07/2020

Figure 8: The original stock price of IBM and its prediction by GRU

From figures 9, 10, and 11, there are 373, 363, and 498 placed long orders out of 523
orders during the testing period from RNN, LSTM, and GRU-based strategy

respectively. The rates of placed long order of those models are 71.33%, 69.40%, and

95.20%. The GRU-based strategy has the highest rate of placing position during the

testing period, followed by RNN and LSTM-based strategy. Naturally, as the investor

only cares about long-only positions, hence, there are only two natural issues posed in

the trading context. Firstly, the rate of accurate long-position. And secondly, the rate of

the wrong long-position. Informally, if there would be a jump in IBM’s stock price, the

investor would place a long order, otherwise, the investor would do nothing instead of

placing a buy order. Undoubtedly, if the investor can control these two rates, he or she

will gain an excellent amount of profit.

Figure 9 has presented that there are 194 accurate long positions out of 279 “ideal” long

positions, leading to a hit rate of 70% in the RNN-based strategy. Figures 10 and 11 have

also pointed out that there are 191 out of 279 equal to 69% and 269 out of 279 equal to

96.40% accurate long position of the LSTM and GRU-based strategy respectively. The

GRU model posed the highest rate of hit rate, followed by RNN and LSTM. The “ideal

buy position” could be taken into consideration as the actual increment of the price. If

there would have been a jump in a given stock price, the investor should have placed a

long order instead of doing nothing.

34

Original price of IBM

Long Position by RNN-based Strategy

Feb

2019

Mar

2019

May

2019

Jul

2019

Aug

2019

Oct

2019

Dec

2019

Jan

2020

Mar

2020

May

2020

Jun

2020

Aug

2020

Oct

2020

Nov

2020

Jan

2021

90

103

116

129

142

The original price of IBM and Long positions by RNN-based Strategy

The Strategy has been placed long only, short-sell is restricted

Figure 9: The long position by RNN-based strategy

Strategy The hit rate

RNN-based strategy 70.0%
LSTM-based strategy 68.5%
GRU-based strategy 96.5%

Source: Author

Table 6: The hit rate of RNN, LSTM, and GRU-based strategy

However, there are still many “false positions” due to the inaccurate predicted prices.

From figures 9, 10, and 11, it is easy to detect that there are several downturn periods

but the model still placed long positions. These could have not placed any position as the

“short-sell” is prohibited. Doing nothing would prevent the investor from losing profit.

For instance, around March 2020, there are many long positions issued by RNN, LSTM,

and GRU model although IBM’s stock price plunges. This could be explained because

there exists a false prediction of IBM’s stock price, resulting in the false position of the

model-based strategy.

35

Original price of IBM

Long Position by LSTM-based Strategy

Feb

2019

Mar

2019

May

2019

Jul

2019

Aug

2019

Oct

2019

Dec

2019

Jan

2020

Mar

2020

May

2020

Jun

2020

Aug

2020

Oct

2020

Nov

2020

Jan

2021

90

103

116

129

142

The original price of IBM and Long positions by LSTM-based Strategy

The Strategy has been placed long only, short-sell is restricted

Figure 10: The long position by LSTM-based strategy

This is partly due to the mean squared loss function of the model RNN. While the loss

function paid special attention to the breadth of the predicted and true observation, it

almost ignored the side of the observation. For example, if the previous price is 120, the

actual price today is $119.9, and the predicted price is $120.01, the model will suggest a

long position instead of doing nothing. That explains why during the period around

August or September 2019, the price of IBM plunged from $140 to $89, but the

rule-based strategy always put long positions.

Figures 12, 13, and 14 presented the equity curves of the deep learning model-based

strategy and the buy and hold strategy. The equity curves have shown the accumulated

profit or loss on the daily basis, which could verify the efficacy of each strategy. It is

well-noted that the profit or loss of the equity is computed through the vectorized backtest.

In other words, If the investors go a long position, he or she will receive the whole return

of that day no matter what it is a positive or negative return. At a glance, all of these

graphs have demonstrated that the daily accumulated profit has been divided into three

patterns, says the first phase from February 2019 to before March 2020, the second phase

around March 2020, and the last phase from March 2020 towards the end. Overall, the

first phase explains the outperformance of the buy and hold strategy before a plummet in

profit of both strategies during the second phase. The last phase showed a by-far better

result of the deep learning model-based strategy over the buy and hold strategy.

36

Original price of IBM

Long Position by GRU-based model

Feb

2019

Mar

2019

May

2019

Jul

2019

Aug

2019

Oct

2019

Dec

2019

Jan

2020

Mar

2020

May

2020

Jun

2020

Aug

2020

Oct

2020

Nov

2020

Jan

2021

89.79

102.88

115.97

129.06

142.15

The original price of IBM and Long positions by GRU-based Strategy

The Strategy has been placed long only, short-sell is restricted

Figure 11: The long position by GRU-based strategy

Table 11 presents the summary of rate of false position in each model.

Strategy False Position Rate

RNN-based strategy 73.60%
LSTM-based strategy 70.70%
GRU-based strategy 94.20%

Source: Author

Table 7: The rate of false position of RNN, LSTM, GRU-based strategy

From table 11, the GRU-based strategy makes the highest rate of false position, followed

by RNN and LSTM-based strategy. This order, also, corresponds to the hit rate of the

models. In other words, the more order placed by the model, the higher the accuracy and

false rate of the order. Ideally, the more order placed by the model, the higher of accurate

rate and the lower the false rate of the order. This is still a huge challenge of the machine

learning-based strategy in algorithmic trading.

Finally, the equity curves are investigated to verify the efficacy of each strategy. The

equity curve is derived directly from the intraday vectorized backtest. More precisely,

the equity curve is computed by the daily return and its pseudo long position instructed

37

by the model. There are two perspectives taken into consideration from the equity curve,

namely the accumulated profit from the effectiveness angle, and the drawdown from the

risk management angle.

Accumulated return of buy and hold Strategy

Accumulated return of RNN-based Strategy

Accumulated Return of IBM stock with buy & hold and RNN-based Strategy

Both Strategies were validated from 02/2019 to 03/2021

Feb

2019

Mar

2019

May

2019

Jul

2019

Aug

2019

Oct

2019

Dec

2019

Jan

2020

Mar

2020

May

2020

Jun

2020

Aug

2020

Oct

2020

Nov

2020

Jan

2021

-18%

-7%

5%

16%

27%

Figure 12: Equity Curve of buy & hold and RNN-based stragtegy

From figure 12, two equity curves, derived from two vectorized intraday backtest from

RNN-based strategy and buy & hold strategy, are presented here. Both of which cover

trading simulation from February 2019 to February 2021, which is roughly two years.

The first equity curve demonstrated the accumulated return of the RNN-based strategy

while the second one presented the accumulated profit of the buy and hold strategy. Both

of the backtests used the respective “out of sample” observations which have not been

exposed to during the training period. It is well-noted that while the backtest is

straightforward, it does not contain any extra fee like transaction cost or slippage.

Figure 12 illustrated that, from February 2019 to March 2020, the RNN-based strategy

maintained a low level of profit compared with the buy and hold strategy. During this

time, the maximum profit of the buy and hold strategy reached around 25%, whereas

RNN-based strategy only achieved roughly 5%. However, the situation changed

dramatically after a plummet in IBM’s stock price around May 2020. Figure 12 pointed

out that while the equity curve of the buy and hold strategy dipped below the level of

-25%, this figure of RNN-based strategy was only -15%. This could be explained that

the RNN model could recognize the downturn of the price movement, hence, it

attempted to put a curb on long positions, leading to a limit on loss. The model

38

outperforms after March 2020 towards the end of the period thanks to the recovery of

IBM’s stock price. At the end of the period, the RNN-based strategy achieved 14.3%
accumulated profit corresponding to a CAGR of 10%, whereas the buy and hold strategy

only attained around 0.6% corresponding to a CAGR of 0.4%. The RNN-based strategy

outperformed due to the wise decision of buying position after recovery of IBM’s stock

price after the plunge in May 2019.

Accumulated return of buy and hold Strategy

Accumulated return of LSTM-based Strategy

Accumulated Return of IBM stock with buy & hold and LSTM-based Strategy

Both Strategies were validated from 02/2019 to 03/2021

Feb

2019

Mar

2019

May

2019

Jul

2019

Aug

2019

Oct

2019

Dec

2019

Jan

2020

Mar

2020

May

2020

Jun

2020

Aug

2020

Oct

2020

Nov

2020

Jan

2021

-25%

-12%

0%

13%

26%

Figure 13: The equity curve of buy & hold and LSTM-based strategy

The key summaries of both strategies can be described as below:

Strategy Accumulated

Profit

Drawdown

RNN-based strategy 14.30%(6.00%) -18.05%

Buy & Hold strategy 0.60%(0.40%) -25.15%

Source: Author. Note: CAGR in

parenthesis

Table 8: Key summaries of RNN-based and the Buy and hold strategy

Similarly, in figure 13, I presented two equity curves, derived from the intraday

vectorized backtest of LSTM-based strategy and buy & hold strategy. At a glance, there

is a distinctive point between the RNN-based strategy mentioned previously and

39

LSTM-based strategy. While the buy & hold strategy posted a higher level of profit from

February 2019 to March 2020, the breadth between LSTM-based profit and buy & hold

profit has been reduced compared with the breadth of RNN-based profit and buy & hold

profit. Figure 12 and figure 13 have also demonstrated that the maximum loss of the

RNN-based strategy around this time is approximately -10.20%, whereas this figure of

LSTM-based strategy is only -7.62%. In other words, the LSTM-based strategy could

perform better than the RNN-based strategy in the first phase of the period. Additionally,

during the dramatic downturn of IBM’s stock price, the maximum loss of LSTM-based

strategy only went down a level of -13.5%, whereas this level of the buy and hold

strategy and RNN-based strategy dipped around -25.15% and -18.07% respectively.

Consequently, in terms of risk management, the LSTM-based strategy could perform

better than the RNN-based strategy and buy and hold strategy.

From March 2019 to March 2021, the performance of the LSTM-based strategy is by far

better than the buy and hold strategy. Besides the recovery of IBM’s stock price from

March 2019, the LSTM model is trained to detect the upturn or downturn of the price,

hence, it has a good strategy to place positions. This leads to maximizing the

accumulated profit. At the end of the period, figure 13 has shown the accumulated profit

of LSTM-based strategy attained 21.77% equal to CAGR of 10.50% while the

accumulated profit of the buy and hold strategy only achieved 0.6% equal to CAGR of

0.4%. The drawdown of the LSTM-based strategy is also better than the buy and hold

strategy. Overall, the LSTM-based strategy has a better achievement than the buy and

hold strategy. The key summaries of both strategies can be described as below:

Strategy Accumulated

Profit

Drawdown

LSTM-based strategy 21.77%(10.50%) -13.50%

Buy & Hold strategy 0.60%(0.40%) -25.15%

Source: Author. Note: CAGR in

parenthesis

Table 9: Key summaries of LSTM-based and the Buy and hold strategy

Figure 14 also presented two equity curves derived from the daily vectorized backtest of

the GRU-based strategy and the buy and hold strategy. While the overall trend of

GRU-based and the buy and hold strategy shapes are similar to RNN-based or

LSTM-based strategy, there are a couple of points that enable this pair outstanding. First

of all, from February 2019 towards August 2019, the accumulated profit of GRU-based

and the buy and hold strategy are almost identical. Then, the equity curve of the buy and

hold strategy started increasing and performing better than its competitor. The maximum

accumulated profit of the buy and hold strategy achieves 28.50% whereas the figure of

the rival only reaches 21.80%. The scenario began changing dramatically since March

2020. Around March 2020, the accumulated profit of both strategies plunged at different

levels. While the GRU-based strategy dipped around the level of 12% which is the

lowest rate of ever happened strategies, this figure of the buy and hold strategy collapsed

below the level of -25%. Clearly, in terms of risk management, the buy and hold

40

strategy managed to perform better than GRU-based strategy, and even LSTM and

RNN-based strategy.

Accumulated return of buy and hold Strategy

Accumulated return of GRU-based Strategy

Accumulated Return of IBM stock with buy & hold and GRU-based Strategy

Both Strategies were validated from 02/2019 to 03/2021

Feb

2019

Mar

2019

May

2019

Jul

2019

Aug

2019

Oct

2019

Dec

2019

Jan

2020

Mar

2020

May

2020

Jun

2020

Aug

2020

Oct

2020

Nov

2020

Jan

2021

-25%

-12%

2%

15%

28%

Figure 14: The equity curve of buy & hold and GRU-based strategy

Additionally, after March 2020, the equity curve of the GRU-based strategy started rising

significantly. This could be explained by the recovery of IBM’s stock price after a

plummet. Besides, the GRU model also showed its efficacy in choosing the “wise” long

position. At the end of the period, the accumulated profit of the GRU-based strategy

attained the level of 26.70% equal to CAGR of 18.65%, which is the highest amongst all

strategies, whereas the final accumulated profit of IBM only remained at the level of

0.6% equal to 0.40%. While the GRU-based strategy is not actually effective in risk

management, the model has gained by-far better performance in seeking profit for the

investors.

The key summaries of both strategies can be described as below:

Strategy Accumulated

Profit

Drawdown

GRU-based strategy 26.71%(18.65%) -11.58%

Buy & Hold strategy 0.60%(0.40%) -25.15%

Source: Author. Note: CAGR in parenthesis

Table 10: Key summaries GRU-based and the Buy and hold strategy

41

4.2 Results of two classical Machine Learning models

In this section, I will present the price prediction of the IBM stock by two classical

machine learning models, namely Logistic Regression and Support Vector Machine

learning. Unlike the model in the previous section, the two classical Machine Learning

models will train a classification model. In other words, based on the numerical input,

the model will produce the categorical outputs corresponding to the pair (1,−1). The

interpretation of a pair (1,−1) is straightforward, says 1 corresponds to the long position

and -1 corresponds to the short position. Although I have enough information for both

long and short order, only long order will be utilized as “short-selling” is prohibited to

ensure the fairness reason. The workflow of this section could be carried out in a

complete 2-step procedure:

• Rigorous treatment of the pseudo long position derived from the classical machine

learning models;

• Rigorous treatment of the equity curves of the model-based strategy and the buy

and hold strategy.

Firstly, I present the rigorous treatment of the long-only position derived from the

classical machine learning model. IBM’s stock price direction will be predicted one-step

forecast for every 10 lag information from Feb 2019 to March 2021. The prediction is,

also, validated independently with the training period, which ensures that the

model-based strategy can prevent look-ahead bias and work in reality. The classical

machine learning-based strategy is simpler than the deep learning-based strategy as I do

not need to interpret the strategy. It is well-noted that “short-selling” is not allowed, so,

the information of 1 in the outcome is considered as a long position, and -1 means

nothing.

Figure 15 has illustrated the long order issued by the LR model. In detail, there are 325
out of 523 orders during the testing period from February 2019 to March 2020. Similarly,

from figure 16, there are 324 out of 523 orders of the SVM model during the testing period.

The rates of placing long order of Logistic Regression and SVM are 62.15% and 61.95%
respectively. Unlike deep learning models, the rate of placing long order of both classical

machine learning models is quite similar. There are also two natural problems posed in

the context of trading. Firstly, the rate of the accurate long position. And secondly, the

rate of the false long position. Figures 15 and 16 have also pointed out that there are 182
and 180 accurate long positions out of 279 “ideal” long positions, leading to the hit rate

equal to 65.25% and 64.5% of the LR and SVM-based strategy. Similar to the previous

section, the “ideal” long position could be taken into consideration as the buy order when

it would have an actual increment of the given stock price. Those figures of classical

machine learning model-based strategies are slightly lower than the figures of RNN and

LSTM-based strategy, and by far lower than the figure of GRU-based strategy.

42

Original price of IBM

Long Position by LR-based Strategy

Feb

2019

Mar

2019

May

2019

Jul

2019

Aug

2019

Oct

2019

Dec

2019

Jan

2020

Mar

2020

May

2020

Jun

2020

Aug

2020

Oct

2020

Nov

2020

Jan

2021

90

103

116

129

142

The original price of IBM and Long positions by based LR-based Strategy

The Strategy has been placed long only, short-sell is restricted

Figure 15: The long position by Logistic Regression-based strategy

The summaries of the hit rate of LR and SVM-based model are described as below:

Strategy The hit rate

LR-based strategy 62.5%
SVM-based strategy 64.5%

Source: Author

Table 11: The hit rate of LR and SVM-based strategy

Moreover, figures 15 and 16 have also posed the problem of false long order due to

inaccurate prediction of the direction. It is not difficult to detect that there are many long

positions issued by both classical machine learning models during the downturn of

IBM’s stock price. As “short-selling” is not allowed, hence, there should have been

nothing instead of placing a buy position. Apparently, not placing any order would

prevent the investor from a huge loss. For example, during March 2020, there are still

many long positions during a plummet of IBM’s stock price from around $ 142 to

roughly $ 90.

43

Original price of IBM

Long Position by SVM-based Strategy

Feb

2019

Mar

2019

May

2019

Jul

2019

Aug

2019

Oct

2019

Dec

2019

Jan

2020

Mar

2020

May

2020

Jun

2020

Aug

2020

Oct

2020

Nov

2020

Jan

2021

90

103

116

129

142

The original price of IBM and Long positions by SVM-based Strategy

The Strategy has placed long only, short-sell is restricted

Figure 16: The long position by SVM-based strategy

The summary of rate of false position in each model can be described as below:

Strategy False Position Rate

LR-based strategy 44.40%
SVM-based strategy 44.40%

Source: Author

Table 12: The rate of false position of LR and SVM-based strategy

Table 12 has shown that the rate of the false long position of each classical machine

learning-based strategy has reached roughly 44.4%, which has been overall lower than

the figure of deep learning-based models. It is also a good angle from the risk

management perspective.

Secondly, I illustrate the equity curves derived from the vectorized backtest of LR and

SVM-based strategy. Similar to the previous part, the equity curve is calculated from the

daily return and its pseudo long position derived from the model-based strategy. There,

also, are two perspectives that appear in the equity curve, namely the accumulated return

and the drawdown of the strategy. Both reflect the efficacy and the risk management’s

angle of the strategy.

44

Accumulated return of buy and hold Strategy

Accumulated return of LR-based Strategy

Accumulated Return of IBM stock with buy & hold and LR-based Strategy

Both Strategies were validated from 02/2019 to 03/2021

Feb

2019

Mar

2019

May

2019

Jul

2019

Aug

2019

Oct

2019

Dec

2019

Jan

2020

Mar

2020

May

2020

Jun

2020

Aug

2020

Oct

2020

Nov

2020

Jan

2021

-25%

-14%

-2%

9%

21%

Figure 17: The equity curve of buy & hold and Logistic Regression-based strategy

From figure 17, two equity curves, derived from two vectorized intraday backtest from

LR-based strategy and the buy and hold strategy, are presented here. Both of which

cover trading simulation from February 2019 to February 2021, which is roughly 523
trading days. The first equity curve demonstrated the accumulated return of the

LR-based strategy while the second one presented the accumulated profit of the buy and

hold strategy. Both of the backtests used the respective “out of sample” observations

which have not been exposed to during the training period. It is well-noted that while the

backtest is straightforward, it does not contain any extra fee like transaction cost or

slippage.

At a glance, figure 17 has presented that, from February 2019 to March 2020, the

accumulated profit of the LR-based strategy maintained a quite similar level with the

profit of the buy and hold strategy. From February 2019 to March 2020, the LR-based

model often kept a higher level of accumulated profit than the buy and hold strategy,

which is completely different from the case of deep learning-based strategy. During that

period, the maximum accumulated profit of the LR-based strategy achieved roughly

25%, whereas the maximum profit of the buy and hold only attained around 25%.

However, the situation changed dramatically after the plummet of IMB’s stock price.

During March 2020, the price of IBM stock plunged more than 38%, from $ 146 to $ 90.

Consequently, the equity curve of the buy and hold strategy dipped below the level of

-25%, while this figure of LR-based strategy was only around -12%. Apparently, in

terms of risk management, the LR-based strategy has performed better than the strategy

45

of the rival. Nonetheless, the LR-based strategy could not keep the “wise” decision from

March 2020 towards the end of the period. LR model could not be conscientious enough

to place accurate orders. There are many buy position instead of doing nothing during

this period, leading to a huge drop in the profit. Finally, LR-based strategy ended up

earning 8.75% equal to a CAGR of 4.24%, which is much lower than the results of deep

learning-based strategy. The key summaries of both strategies can be described as below:

Strategy Accumulated

Profit

Drawdown

LR-based strategy 8.80%(6.00%) -18.05%

Buy & Hold strategy 0.60%(0.40%) -25.15%

Source: Author. Note: CAGR in

parenthesis

Table 13: Key summaries of LR-based and the Buy and hold strategy

Accumulated return of buy and hold Strategy

Accumulated return of SVM-based strategy

Accumulated Return of IBM stock with buy & hold and SVM-based Strategy

Both Strategies were validated from 02/2019 to 03/2021

Feb

2019

Mar

2019

May

2019

Jul

2019

Aug

2019

Oct

2019

Dec

2019

Jan

2020

Mar

2020

May

2020

Jun

2020

Aug

2020

Oct

2020

Nov

2020

Jan

2021

-31%

-19%

-7%

6%

18%

Figure 18: The equity curve of buy & hold and SVM-based strategy

Figure 18 presented two equity curves of SVM-based and the buy and hold strategy.

Initially, the buy and hold strategy has a better result than the SVM-based strategy,

however, at the end of the period, the SVM-based strategy ended up attaining a higher

level of accumulated profit. In detail, from the beginning of the period till February

2020, the SVM-based strategy has undergone a slightly higher level of profit than the

buy and hold strategy, but the breadth of these equity curves is not too far. Around

46

February 2020, there existed a quick-rising in the equity curve of the buy and hold

strategy. Formally, reached the maximum accumulated return at the level of 25%
whereas the accumulated profit of the SVM-based strategy seemed to level off around

7%. Nonetheless, the situation changed quickly during a gigantic drop in IBM’s stock

price. In March 2020, IBM’s stock price dramatically dropped from $ 146 to $ 90 equal

to -38% in price depreciation. As a result, both equity curves of SVM-based and the buy

and hold dipped around the level of -30.80% and -25.15%. The fact that SVM-based

strategy dipped deeper than the buy and hold strategy is unprecedented. In other

model-based strategies, the strategies are always better than the buy and hold strategy. It

means that the models are doing good in controlling the downside of the equity curve.

Additionally, the level of -30.80% of SVM-based strategy is the worst drawdown ever,

implying that SVM-based strategy could not play a role of a guard in terms of risk

management.

Strategy Accumulated

Profit

Drawdown

SVM-based strategy 6.15%(2.97%) -30.08%

Buy & Hold strategy 0.60%(0.40%) -25.15%

Source: Author. Note: CAGR in

parenthesis

Table 14: Key summaries of SVM-based and the Buy and hold strategy

However, thanks to the recovery of IBM’s stock price from June 2020 towards the end of

the period, the equity curve of the SVM-based strategy keep rising while the equity

curve of the buy and hold strategy fluctuated. Finally, the SVM-based strategy’s equity

curve ended up attaining a level of 6.15% in profit equal to a CAGR of 2.97%. This

figure is exiguous compared with the other model-based strategies.

Overall, I presented the overview of algorithmic trading derived from machine learning

models. The model-based strategy, to some extent, has shown efficacy over the buy and

hold strategy. Deep learning models like RNN, LSTM, and GRU demonstrated a better

strategy, resulting in a higher level of profit.

Strategy Accumulated

Profit

Drawdown

SVM-based strategy 6.15%(2.97%) -30.08%

LR-based strategy 8.80%(6.00%) -18.05%

RNN-based strategy 14.30%(6.00%) -18.05%

LSTM-based strategy 21.77%(10.50%) -13.50%

GRU-based strategy 26.71%(18.65%) -11.58%

Buy & Hold strategy 0.60%(0.40%) -25.15%

Source: Author. Note: CAGR in

parenthesis

Table 15: Key summaries of all trading strategies

47

Moreover, deep learning models also play a better role in managing the downside of the

equity curve. This success could be explained by the wise decision and better

understanding of IBM’s stock price of the deep learning models. As a result, those

models can “guide” the investor to have a wiser decision in going long position.

However, both deep learning and classical machine learning models need more room in

improving the detection of false information. The rate of false long position remains at

the high level. This is indeed a challenging topic in quantitative trading and machine

learning. For the sake of completeness, key summaries of all strategies are given in table

15.

48

Chapter 5: Trustworthiness in AI Solutions in Finance

5.1 What is safe machine leanring and how trustworthy are AI

models?

Machine Learning has revolutionized numerous fields, offering transformative solutions

across various applications, yet the safety and reliability of these technologies remain a

topic of considerable debate. From healthcare, computer vision, autonomous car driving,

where algorithms can predict patient outcomes or recommend treatments, to finance,

where they assess credit risks and detect fraud, the potential benefits are vast. In

transportation, machine learning enhances autonomous vehicle systems, aiming to

improve safety and efficiency. However, the inherent opacity of machine learning model

often referred to as the ”black box” problem, raises concerns about their safety and

decision-making processes. The lack of transparency makes it challenging to fully

understand how these models arrive at their conclusions, leading to potential risks such

as unintended biases or erroneous outputs. As machine learning solutions become

increasingly integral to critical systems, ensuring their reliability and addressing these

safety concerns becomes imperative, requiring ongoing research and robust validation

processes to build trust and mitigate potential risks. That is the reason why we need a

“safe” AI solution.

Safe machine learning is an evolving framework aimed at mitigating the risks associated

with the deployment of AI systems, particularly in sensitive fields like finance. Machine

learning models, known for their predictive power, also present challenges such as lack

of transparency, fairness, and robustness, often referred to as the “black-box” nature of

AI. According to Giudici et al (2024), the S.A.F.E. framework encompassing

Sustainability, Accuracy, Fairness, and Explainability, provides essential metrics to

assess the trustworthiness of AI systems. This is especially crucial in finance, where

models can inadvertently introduce biases, creating unfair advantages or risks. The Rank

Graduation Box (RGB) metrics proposed by Babaei et al. (2024) measure these aspects

through model-agnostic tools, ensuring that AI systems in finance remain robust and fair

under various stress scenarios.

However, the inherent opacity of machine learning systems raises significant concerns in

the financial sector. A critical issue is the inability to explain decisions made by complex

models such as deep learning or random forests. This lack of explainability can lead to

substantial risks in high-stakes environments like banking or insurance, where decisions

affect financial stability and individual livelihoods. Regulatory bodies like the European

Union have responded by introducing guidelines such as the AI Act (2021), which

mandates that AI systems be not only accurate but also interpretable and fair (European

Commission, 2021)

The financial sector is particularly vulnerable to these risks, as AI-driven decisions often

involve sensitive data and have far-reaching consequences. A failure to address fairness,

for instance, can lead to discriminatory practices, especially in areas like lending or

49

credit scoring. Giudici et al. (2023) underscore that AI models in finance must be robust

against extreme events, such as market crashes or cyberattacks, and ensure that biases do

not disproportionately affect disadvantaged groups. This is where the Rank Graduation

Fairness (RGF) metric comes into play, as it measures how well AI systems perform

across different demographic groups, thus mitigating unfair outcomes.

Moreover, Giudici and Raffinetti (2024) highlight that explainability is another critical

factor in ensuring the safety of machine learning models. For AI systems to be truly

trustworthy, they must offer clear reasoning for their decisions, which is especially

difficult for black-box models. The Rank Graduation Explainability (RGE) metric helps

by offering a quantitative measure of how understandable a model’s decisions are,

ensuring transparency without sacrificing accuracy.

Finally, the development of safe machine learning systems is vital for the responsible use

of AI in finance. With frameworks like S.A.F.E. and tools such as the Rank Graduation

Box, it is possible to measure and manage the risks associated with AI, ensuring that

systems remain accurate, fair, and transparent. The stakes are particularly high in

finance, where model failures can lead to significant financial and ethical consequences,

making it imperative that these systems are rigorously evaluated using comprehensive,

model-agnostic metrics. In this thesis, Python will be utilized assess the reliability of

models applied in trading systems.

5.2 AI models trustworthiness methodology

The methodology for SAFE AI revolves around a framework for evaluating AI systems

across four key principles: Sustainability, Accuracy, Fairness, and Explainability. These

dimensions are unified under a statistical framework, grounded in the Lorenz curve and

its extensions. This common methodological basis ensures consistency across different

metrics of AI risk evaluation.

The core theoretical foundation uses the Lorenz curve, traditionally applied in

economics to assess income inequality. The authors, Babaei et al (2024)extend this

concept to AI evaluation by introducing two related tools: Dual Lorenz Curve: Orders

the data inversely, providing an alternative view on data distribution, and seconly

Concordance Curve: A novel tool comparing the ranks of two distributions, used to

measure the degree of similarity between predicted and actual outcomes.

These statistical tools are integrated into the Rank Graduation (RG) measure, which is

central to the SAFE framework. The RG measure quantifies the distance between the

concordance curve and the Lorenz curves, yielding a value that reflects the alignment

between predictions and actual outcomes.

The Rank Graduation Box (RGB) incorporates four metrics, each corresponding to a key

principle in the SAFE framework: S for Sustainability, A for Accuracy, F for Fairness

and E for Explainability. The details of the definitions are illustrated as below:

50

• Sustainability: Measured by the Rank Graduation Robustness (RGR), which

evaluates the AI model’s robustness by comparing predictions on normal versus

perturbed data (Babaei et al., (2024));

• Accuracy: The Rank Graduation Accuracy (RGA) generalizes the Area Under the

Curve (AUC) to continuous and ordinal predictions, capturing the closeness of

predictions to actual outcomes (Giudici and Raffinetti, (2023));

• Fairness: The Rank Graduation Fairness (RGF) metric assesses whether the AI

model treats different population groups equally by comparing models with and

without group-specific variables (Giudici et al., (2024));

• Explainability: The Rank Graduation Explainability (RGE) metric captures the

contribution of each input variable by comparing a full model to models excluding

specific predictors (Raffinetti, (2023)).

Additionally, to validate the metrics, Babaei et al (2024)propose statistical tests based on

U-statistics. These tests are used to determine whether the differences in metrics

between AI models (e.g., accuracy, fairness, robustness) are statistically significant. This

ensures that the performance and risk assessments made using the RGB framework are

reliable. To this end, Python code snippets are used to perform the statistical tests.

5.3 How reliable and trustworthy are our models ?

The results presented in this thesis were generated through Python code, which has been

included in the Appendix for reference. The code follows the SAFE methodology

discussed in the previous section, ensuring consistency with the key principles outlined

earlier. It’s worth highlighting that all models in the thesis, ranging from sophisticated

deep learning algorithms to more traditional machine learning approaches, are

constructed exclusively from the stock’s own time series data. No external economic

indicators or variables were incorporated into these models. This choice was deliberate,

as the aim was to assess the stock’s historical performance to forecast future trends and,

based on those predictions, make informed trading decisions.

The focus on time series data means that the models rely solely on past stock

information to predict future behavior, emphasizing the intrinsic value of the stock’s own

historical data. By excluding external economic factors, the analysis isolates the stock’s

inherent patterns and trends. As a result, the models are more self-contained, relying on

the stock’s own movements to drive predictions. This approach is particularly relevant in

finance, where stock-specific analysis can sometimes offer more precise insights than

models that include broader, less directly relevant economic data. Although the overall

methodology touches on multiple dimensions of AI model evaluation, including fairness,

this section of the thesis places particular emphasis on three main aspects: Accuracy,

Sustainability (or Robustness), and Explainability. Accuracy is critical in ensuring that

the models make reliable predictions based on the stock’s past performance.

51

Sustainability, or robustness, assesses the models’ resilience to changes or disturbances

in the input data, ensuring that predictions remain stable under varying conditions.

Lastly, Explainability is crucial for understanding how the models arrive at their

predictions, offering transparency in decision-making processes.

The empirical results of five models: LSTM, GRU, RNN, SVM, and logistic regression

(logit)—in terms of accuracy and robustness reveals clear advantages of deep learning

over classical machine learning approaches. The deep learning models (LSTM, GRU,

and RNN) significantly outperformed classical machine learning models (SVM and

Logit) in terms of accuracy. Specifically, LSTM achieved an accuracy of 0.9998, GRU

reached 0.9999, and RNN scored 0.9996, showcasing their ability to make highly precise

predictions. In contrast, the classical models demonstrated much lower accuracy, with

SVM achieving 0.51 and Logit scoring 0.56. This substantial difference can be attributed

to the deep learning models’ capability to capture complex, non-linear relationships

within the stock’s time series data, which classical models like SVM and logit struggle to

detect. These results are expected and consistent with those of the backtesting analysis

mentioned in the earlier chapter, where deep learning models consistently performed

better. The superior accuracy of LSTM, GRU, and RNN highlights their effectiveness in

understanding the underlying patterns in stock prices, which often involve non-linear

dependencies that classical models fail to capture.

Secondly, robustness index once again proves the models’ stability when subjected to

variations or perturbations in the data, the deep learning models also outperformed

classical machine learning methods. The robustness scores for the deep learning models

were relatively high, with both LSTM and RNN scoring 0.87, and GRU scoring 0.86.

Meanwhile, the classical models showed much lower robustness, with SVM scoring 0.47
and Logit a t0.53. The similarity in patterns between accuracy and robustness suggests

that the deep learning models are not only highly accurate but also maintain their

performance under less ideal conditions, further reinforcing their superiority. The

robustness of deep learning models can be largely attributed to the use of regularization

techniques, which play a critical role in preventing overfitting. Regularization methods,

such as l2 regularization (weight decay), dropout, and early stopping, work by

introducing constraints or penalties on the model’s complexity. This helps ensure that the

model does not become overly reliant on specific patterns in the training data, making it

more generalized and capable of performing well on unseen data. As a result, deep

learning models are better equipped to maintain stability and accuracy when faced with

variations or noise in the input data. By reducing overfitting, regularization enhances the

model’s ability to learn underlying, more generalizable patterns, making it more robust

and reliable in real-world applications.

To validate these findings, statistical tests were conducted to compare the robustness of

each model. At a 95% confidence level, the results confirmed that the differences in

robustness across the models are statistically significant. The p-values between models

further illustrate these differences: LSTM-GRU (2.67e-226), LSTM-RNN (3.8e-198),

LSTM-SVM (0.0009), GRU-RNN (0.015), GRU-SVM (0.0346), RNN-SVM (0.015),
and SVM-Logit (2.4e-05). These values indicate that, statistically, the robustness of the

52

deep learning models is significantly different from that of classical machine learning

models, with deep learning showing much higher robustness scores.

In the context of deploying AI models, particularly those characterized by their

complexity and opaque nature, often referred to as black-box models, the explainability

becomes a fundamental concern. The ability to understand and interpret how these

models make decisions is not merely a technical necessity but a crucial factor in gaining

and maintaining trust from user, traders and stakeholders. This transparency is essential

for fostering confidence in AI systems and encouraging their continued development and

effective management.

Figure 19: Features Explanation of LSTM model

53

Figure 20: Features Explanation of RNN model

Moreover, methodologies designed to ensure the safe and responsible use of AI play a

significant role in demystifying the contributions of various input variables within a

model. This is applicable to both regression and classification models. SAFE

methodology practices emphasize the importance of understanding each variable’s

impact on the model’s predictions, which in turn helps in improving the model’s

reliability and accountability.

54

Figure 21: Features Explanation of GRU model

Figure 22: Features Explanation of SVM model

55

Figure 23: Features Explanation of Logistic model

The significance of these practices is highlighted through demonstrative examples, such

as Figures 19, 20, 21, 22, and 23 which depict the behavior of advanced deep learning

models. These figures reveal that such models equally prioritize both historical and the

most recent price data when making predictions. This balanced approach is particularly

valuable in trading environments, where current price information can provide more

actionable insights compared to historical data alone. There is no doubt to say that the

most recent information is always better in making trading decision

In contrast, classical machine learning models tend to focus more heavily on past data.

This methodological difference can account for the observed superiority in accuracy and

robustness of advanced deep learning models over traditional machine learning

approaches. The advanced models’ ability to integrate and weigh both past and present

information allows them to adapt more effectively to changing conditions, thereby

enhancing their predictive performance and reliability in dynamic environments.

Finally, understanding these differences helps to explain why advanced deep learning

techniques often outperform classical models in various applications, especially those

involving real-time data and complex decision-making scenarios. By appreciating the

role of explainability and the nuances of different AI methodologies, stakeholders can

make more informed decisions about the deployment and further development of AI

systems.

56

Chapter 6: Conclusions

6.1 General Conclusions

This thesis analyzed the consequences of quantitative trading based on machine learning

algorithms of IBM’s stock price from January 2000 to March 2021. In detail, the model

is trained from Jan 2000 to February 2019 and evaluated during the rest of the period.

The algorithms are mainly classified into two types: classical machine learning and deep

learning models. The classical machine learning models include Logistic Regression and

Support Vector Machine. Deep learning models contain Recurrent Neural Network,

Long Short-Term Memory, and Gated Unit Recurrent. Each model follows strictly the

complete 8-step procedure mentioned in the method section, the model-based strategy is

validated independently during the testing period, which is absolutely independent of the

training period.

On the one hand, the output of the classical machine learning model is indeed the trading

signal (1,-1) corresponding to a long and short position. For the sake of fairness,

“short-selling” is restricted in this framework, hence, I only make use of the signal of 1.

On the other hand, the output of deep learning models is in numerical form, meaning that

the model is predicting the one-step-ahead price of IBM’s stock. Consequently, I need

one more step to convert the output into a trading strategy. The interpretation of trading

strategy is quite straightforward and it only relies on the predicted price. If the forecasted

price is larger than the actual current price, the trading signal is assigned as a buy

position, otherwise, I would do nothing as “short-selling” is prohibited. The

model-based strategy, was then verified with the daily vectorized backtest. The daily

vectorized backtest is responsible for computing the long-position return of the strategy

no matter what it is positive or negative.

The strategy is evaluated through four pillars, namely the efficacy of each strategy by the

accumulated profit, the risk management by the drawdown, the hit rate, and the false

position rate. When it comes to efficacy and risk management perspective, I presented

the equity curve of each strategy. The equity curve elaborates on the accumulated profit

of each strategy on the daily basis during the testing period. It also pointed out the

maximum drop in the profit curve, which is indeed the drawdown. The drawdown plays

a crucial role in risk management, it shows that the largest tolerance of the strategy

concerning the movement of the given underlying. On the one side, the accumulated

profit shows the effectiveness of the strategy in going long positions. On the other side,

the drawdown verifies the effectiveness of not going long position. In other words, from

the investor’s perspective, the model needs to be wise enough to place a buy position and

not to place anything in a particular situation. These also are reflected in the hit rate and

the rate of false position.

Overall, the results have demonstrated that the deep learning models have a better

performance in generating trading strategies and managing risk than classical machine

learning models. In terms of the effectiveness of the strategy, the GRU-based strategy

attained an accumulated profit of 26.71% from February 2019 to March 2021, equal to a

57

CAGR of 18.65%. It is the most outstanding performance among strategies. The other

two deep learning-based strategies, namely LSTM-based and RNN-based strategies, also

have good results. LSTM-based and RNN-based strategies achieved 21.77% equal to a

CAGR of 10.50% and 14.30% equal to a CAGR of 6.00%, whereas the default buy and

hold strategy only gained 0.6% equal to a CAGR of 0.4% during the testing period of

two years. Additionally, two classical machine learning model-based strategies, namely

LR-based and SVM-based strategies ended up earning accumulated profits of 8.80%
equal to a CAGR of 6.00% and 6.15% equal to a CAGR of 2.97%, which are better than

the default buy and hold strategy but by far moderate than the deep learning model-based

strategies. In terms of risk management, the deep learning model-based strategies are

always their cutting-edge advantage over the default buy and hold and classical machine

learning model-based strategies in whether to place a buy position or not. In detail, while

the drawdown of GRU, LSTM, and RNN-based strategy only dipped around a level of

-11.58%,-13.50%, and -18.5% respectively, these figures of two machine

learning-based strategies, says LR and SVM-based strategy, and the buy and hold

strategy are -18.05%,-30.08%, and -25.15% respectively. In the worst case, the

SVM-based model could lose a maximum of 30.08% of its accumulated profit during the

testing period which is fairly larger than the default strategy, whereas the GRU-based

strategy could only lose a maximum of 11.58% of its accumulated profit. Besides, the

deep learning model-based strategy also conquered a leading position in the hit rate. The

hit rate of RNN, LSTM, and GRU-based strategy reached 70.00%, 68.5%, and 96.5%
respectively, whereas these figures of LR and SVM-baed strategy only remained around

62.5% and 64.5%. This could partly imply that the deep learning model-based strategies

are wise enough to go long positions in the right situation. However, the results have also

pointed out that the rate of the false position of deep learning model-based strategies

remained higher than their counterpart. In detail, RNN, LSTM, and GRU-based strategy

reached 73.6%, 70.7%, and 94.2% respectively, whereas the rate of false position of LR

and SVM-based strategy stayed only around 44.4%.

In conclusion, following the contributions such as those by, the results have provided a

further empirical example of how to a machine learning model-based strategy in

quantitative trading. The results have also shown that while there is still room for

improvement, deep learning models paved the way for a fruitful approach in terms of

profit and risk management in quantitative investment compared with other model-based

strategy or the default buy and hold strategy.

6.2 Research Implications

The research into trading using quantitative techniques, particularly deep learning, has

significant implications for both the financial industry and academic fields. By

harnessing the power of deep learning algorithms, this research can lead to the

development of highly precise models, therefore capable of identifying non-linear,

complex patterns and trends in vast amounts of financial data that traditional methods

might be overlooked. This could revolutionize trading strategies, enabling investors and

institutions to make more informed decisions, minimize risks, and maximize returns in

58

increasingly volatile markets. Moreover, the successful application of these techniques

could spur further innovation in algorithmic trading, leading to the automation of

complex trading strategies that adapt in real time to market changes. From an academic

point of view, this research contributes to the development of quantitative-based model

in Finance, providing a concrete foundation for future studies that explore the

intersection of finance, data science, and artificial intelligence. Additionally, according

to Heaton et al (2017) and Fischer and Krauss (2018), the findings could have broader

implications for regulatory practices, as they highlight the need for updated frameworks

that address the challenges and opportunities presented by AI-driven trading systems

6.3 Further research recommendations and suggestions

While no trading strategy is entirely without flaws, the systematic and logical framework

provided by quantitative methodologies is crucial in managing the increasing complexity

of modern financial markets. This approach offers traders, users a clean, clear and

scientific way to analyse and make decision, which will significantly remove the nature

of irrationale or senseless of human being. These methodologies guide traders through

the often chaotic and unpredictable nature of trading, offering a disciplined approach that

helps mitigate the emotional and cognitive biases that can cloud judgment. As the

financial landscape continues to evolve, becoming more data-driven and influenced by a

multitude of factors, further research should focus on expanding the integration of

alternative data sources. This includes not just traditional financial indicators, but also

non-conventional data like social media sentiment, real-time news, and even

environmental factors, which can provide a more holistic view of market dynamics.

Moreover, the combination of deep learning with reinforcement learning presents a

promising frontier for research, where models can be developed not only to forecast

market trends but also to adaptively optimize trading decisions in real time. This hybrid

approach could lead to the creation of more autonomous trading systems that are capable

of learning and improving over time, thereby increasing their effectiveness in various

market conditions. Additionally, the reseach also focuss on the ability of interpretability

of the model, and how accurate and reasonable the interpretability is. As deep learning

models become more complex, understanding how and why a model arrives at certain

decisions becomes essential, both for gaining the trust of users and for meeting

regulatory standards that require transparency in automated trading systems.

In addition, research should continue to explore ways to enhance the robustness and

generalization capabilities of these models, ensuring that they perform reliably across a

range of market scenarios, including those that are highly volatile or exhibit unusual

patterns. This is critical for ensuring that models are not just effective in specific

conditions but are adaptable to the broad spectrum of real-world market behaviors.

Finally, there is a growing need for more efficient training algorithms and model

architectures that can reduce the computational resources and time required to develop

and deploy these sophisticated models. As financial markets become faster and more

complex, the ability to quickly iterate and update models in response to new data is

59

becoming increasingly important. To this end, researchers can help traders stay ahead in

the ever-changing landscape of global finance, providing them with the tools they need

to make informed, systematic decisions in a logical and consistent manner.

An important yet often overlooked area is the application of AI in risk management. A

good profitable trading strategy alway company with exellent risk management. Future

research could focus on developing AI-driven methodologies that systematically

identify, assess, and mitigate risks within trading strategies, thereby enhancing their

overall stability and resilience. By using AI to automate and optimize risk management

processes, traders could create more robust strategies that are better equipped to handle

market volatility and unexpected events.

60

APPENDIX

Mathematical Proofs

I would like to prove equation (6) in section 2.1.3.

Let A is an algorithm and m-tupe training set S = {zi = (xi, yi)} ∀i = 1, . . . ,m, and

A(S) denotes the outcome of an algorithm A with the instances in the training set S as

input. Given a training set S and an additional observation z∗, Si denotes the training

set with a replacement z∗ for zi. Therefore, the stability of a model will be measured by

comparing the loss value of the outcome A(S) on zi to the loss value of A(S
i
) on zi. For

sake of clarity, the stability is measured by: `(A(Si, zi))-`(A(S), zi). Prove that:

E(LD(A(S))-LS(A(S))) = E(`(A(S
i
, zi)-`(A(S)), zi)) (35)

Proof: Because, zi, z
∗ are independent, so, from the definition of the true loss of an

algorithm, I have:

LD(A(S)) = E(`(A(S)), zi))) = E(`(A(S
i
, zi)) (36)

Hence,

E(LD(A(S))) = E(`(A(S
i
, zi)) (37)

Besides, from the definition of the training loss, I have:

LS(θ) =
1

m

m∑

i=1

`(θ, xi, yi) (38)

So, it is easy to verify that:

E(LS(θ)) = E(
1

m

m∑

i=1

`(θ, xi, yi)) = E(`(A(S)), zi))) (39)

Equation (37) and (39) conclude the proof.

61

Manipulation and Computation Code Snipets in Python

Code: Load Historical Data Price of Stock IBM from Yahoo Finance Data Source

import pandas as pd

import pandas_datareader as web

from TimeSeries_Preprocess import split_train_val_scale

from Supervised_TimeSeries_Modern import create_X_y

stock = ’IBM’

ibm_df = web.DataReader(stock, start = ’2000-01-01’, end = ’2021-03-01’,

\ data_source = ’yahoo’)

ibm_df = ibm_df[’Adj Close’]

ibm_df = pd.DataFrame(ibm_df)

type_of_input = ’gen’

type_of_output = ’modern’

lag = 10

ahead = 1

ratio = 0.9

input_train_scaled, input_val_scaled, \

input_min_val, input_max_val, input_val \

= split_train_val_scale(ibm_df, ratio = ratio)

output_train_scaled, output_val_scaled, \

output_min_val, output_max_val, output_val\

= split_train_val_scale(ibm_df, ratio = ratio)

X_train, y_train = create_X_y(

input_train_scaled,

output_train_scaled,

lag = lag,

ahead = ahead,

type_of_input = type_of_input,

type_of_output = type_of_output

)

X_val, y_val = create_X_y(

input_val_scaled,

output_val_scaled,

lag = lag,

ahead = ahead,

type_of_input = type_of_input,

type_of_output = type_of_output

)

62

Code Exam: Split data into training and testing time series dataset

import numpy as np

def split_train_val_scale(df_train_val, ratio = 0.8, scale = ’normal’):

idx = int(df_train_val.shape[0] * ratio)

df_train = df_train_val.iloc[: idx, :]

df_val = df_train_val.iloc[idx :, :]

if scale == ’minmax’:

min_train = np.min(df_train)

max_train = np.max(df_train)

df_train_scaled = (df_train - min_train)/(max_train - min_train)

if df_val.shape[0] > 1:

min_val = np.min(df_val)

max_val = np.max(df_val)

df_val_scaled = (df_val - min_val)/(max_val - min_val)

else:

min_val = min_train

max_val = max_train

df_val_scaled = (df_val - min_val) / (max_val - min_val)

return df_train_scaled, df_val_scaled, min_val.values,

max_val.values, df_val

else:

mu_train = np.mean(df_train)

sigma_train = np.std(df_train)

df_train_scaled = (df_train-mu_train)/sigma_train

mu_val = mu_train

sigma_val = sigma_train

df_val_scaled = (df_val - mu_val)/sigma_val

return df_train_scaled, df_val_scaled, mu_val.values,

sigma_val.values, df_val

def scale_df(df):

if df.shape[0] > 1:

min_value = np.min(df)

max_value = np.max(df)

df_scaled = (df - min_value)/(max_value - min_value)

return min_value, max_value, df_scaled

def reversed_df(df_scaled, min_value, max_value):

df = df_scaled*(max_value - min_value) + min_value

return df

63

Code: Split data into training and testing time series dataset

import numpy as np

def SupervisedTimeSeries(df, lag, ahead):

output_ = []

if ahead > 0:

for i in range(df.shape[0]):

if i*ahead + lag > df.shape[0]:

break

else:

output_.append(df[(i * ahead): (i * ahead + lag)].values)

else:

for i in range(df.shape[0]):

if i + lag > df.shape[0]:

break

else:

output_.append(df[i: (i+lag)].values)

return np.array(output_)

def create_X_y(

df_input,

df_output,

lag,

ahead,

type_of_input = ’flex’,

type_of_output = ’classic’,

custom_lag_of_input = [1, 2, 3, 4, 5]

):

assert df_input.shape[0] == df_output.shape[0]

input_of_df = SupervisedTimeSeries(df_input, lag, ahead)

if type_of_input == ’flex’:

assert df_input.shape[1] == len(custom_lag_of_input)

assert max(custom_lag_of_input) <= lag

for i in range(input_of_df.shape[0]):

for j in range(len(custom_lag_of_input)):

input_of_df[i, :(input_of_df.shape[1]-custom_lag_of_input[j]), j]

= 0

if type_of_output == ’classic’:

output_of_df = []

if ahead > 0:

for i in range(df_output.shape[0]):

if (i + 1)*ahead > df_output[lag:].shape[0]:

break

else:

output_of_df.append(df_output[lag:][i*ahead: (i + 1)*ahead])

else:

for i in range(df_output.shape[0]):

if lag + i > df_output.shape[0]:

break

64

else:

output_of_df.append(df_output[(lag+i-1): (lag+i)])

output_of_df = np.array(output_of_df)

mutual = min(input_of_df.shape[0], output_of_df.shape[0])

input_of_df = input_of_df[: mutual, :, :]

output_of_df = output_of_df[: mutual, :, :]

else:

k = 0

for _ in range(input_of_df.shape[0]):

if (_*ahead + input_of_df.shape[1]) > (df_input.shape[0] - ahead):

break

else:

k += 1

if ahead > 0:

output_of_df = np.ones(shape = (k, input_of_df.shape[1], ahead))

for i in range(output_of_df.shape[0]):

for j in range(1, ahead + 1):

output_of_df[i, :, (j - 1): j] =

df_output[(ahead*i + j): (ahead *i+j+input_of_df.shape[1])].values

else:

output_of_df = np.ones(shape = (k, input_of_df.shape[1], 1))

for i in range(output_of_df.shape[0]):

output_of_df[i, :, 0: 1] = df_output[i: (input_of_df.shape[1] + i)]

mutual = min(input_of_df.shape[0], output_of_df.shape[0])

input_of_df = input_of_df[: mutual, :, :]

output_of_df = output_of_df[: mutual, :, :]

return input_of_df, output_of_df

65

Code: GRU Deep Learning Model

import tensorflow as tf

from tensorflow import keras

from keras.callbacks import EarlyStopping

from keras.regularizers import l2, l1

from thesis_deeplearning_train_val import X_train, y_train, X_val, y_val, \

lag, ahead, type_of_output,\

input_min_val, input_max_val, output_min_val, output_max_val, output_val, \

stock

import pandas as pd

tf.random.set_seed(5)

max_epoch = 2000

batch_size = 32

if type_of_output == ’modern’:

def last_step_mse(Y_true, Y_pred):

return keras.metrics.mean_squared_error(Y_true[:, -1], Y_pred[:, -1])

def rnn(n_units = 32, reg = 0.01, learning_rate = 0.01, seed = 5):

model = keras.models.Sequential(

[

keras.layers.GRU(

n_units,

kernel_initializer = keras.initializers.glorot_uniform(seed),

bias_initializer = keras.initializers.glorot_uniform(seed),

recurrent_initializer =\

keras.initializers.orthogonal(seed = seed),

input_shape = (X_train.shape[1], X_train.shape[-1]),

kernel_regularizer = l2(reg),

return_sequences = True,

),

keras.layers.GRU(

n_units,

kernel_initializer = keras.initializers.glorot_uniform(seed),

bias_initializer = keras.initializers.glorot_uniform(seed),

recurrent_initializer = keras.initializers.orthogonal(seed=seed),

kernel_regularizer = l2(reg),

return_sequences = True,

),

keras.layers.GRU(

n_units,

kernel_initializer=keras.initializers.glorot_uniform(seed),

bias_initializer=keras.initializers.glorot_uniform(seed),

recurrent_initializer=keras.initializers.orthogonal(seed=seed),

kernel_regularizer=l2(reg),

return_sequences=True,

),

keras.layers.TimeDistributed(

keras.layers.Dense(

ahead,

kernel_initializer = keras.initializers.glorot_uniform(seed),

66

bias_initializer = keras.initializers.glorot_uniform(seed),

kernel_regularizer = keras.regularizers.l2(reg)

)

)

]

)

model.compile(

optimizer = keras.optimizers.RMSprop(learning_rate = learning_rate,

\ rho = 0.75),

loss = ’mean_squared_error’,

metrics = [last_step_mse]

)

return model

early_stopping = EarlyStopping(

monitor = ’val_last_step_mse’,

mode = ’min’,

verbose = True,

patience = 100,

min_delta = 1e-5,

restore_best_weights = True

)

"""TRAINING PROCESS"""

retrain_after_crossval = True

if retrain_after_crossval:

model = rnn(

n_units = 8,

reg = 1e-06,

learning_rate = 1e-03,

seed = 5

)

model.fit(

X_train,

y_train,

epochs = max_epoch,

batch_size = batch_size,

validation_data = (X_val, y_val),

callbacks = [early_stopping]

)

print(min(model.history.history[’val_last_step_mse’]))

pd.DataFrame(

{

’origin_reference’: output_val[(lag + ahead - 1):].values.flatten(),

’actual’: y_val[:, -1].flatten()*(output_max_val-input_min_val)

+ input_min_val,

’pred’: model.predict(X_val)[:, -1].flatten()

* (input_max_val - input_min_val)

+ input_min_val,

},

67

index = output_val[(lag + ahead -1):].index

).to_csv(f’thesis_vis/{stock}_type_{type_of_output}_test_GRU.csv’)

else:

def rnn(n_units = 32, reg = 0.01, learning_rate = 0.01, seed = 5):

model = keras.models.Sequential(

[

keras.layers.SimpleRNN(

n_units,

kernel_initializer = keras.initializers.glorot_uniform(seed),

bias_initializer = keras.initializers.glorot_uniform(seed),

recurrent_initializer = keras.initializers.orthogonal(seed=seed),

input_shape = (X_train.shape[1], X_train.shape[-1]),

kernel_regularizer = l2(reg),

return_sequences = False

),

keras.layers.Dense(

ahead,

kernel_initializer = keras.initializers.glorot_uniform(seed),

bias_initializer = keras.initializers.glorot_uniform(seed),

kernel_regularizer = keras.regularizers.l2(reg)

)

]

)

model.compile(

optimizer = keras.optimizers.RMSprop(learning_rate = learning_rate,

rho = 0.9),

loss = ’mean_squared_error’

)

return model

early_stopping = EarlyStopping(

monitor = ’val_loss’,

mode = ’min’,

verbose = True,

patience = 100,

min_delta = 1e-5,

restore_best_weights = True

)

retrain_after_crossval = True

if retrain_after_crossval:

model = rnn(

n_units = 8,

reg = 1e-06,

learning_rate = 1e-04,

seed = 5

)

model.fit(

X_train,

y_train,

epochs = max_epoch,

batch_size = batch_size,

validation_data = (X_val, y_val),

68

callbacks = [early_stopping]

)

print(min(model.history.history[’val_loss’]))

pd.DataFrame(

{

’origin_reference’: output_val[(lag + ahead - 1):].values.flatten(),

’actual’: y_val[:, -1].flatten()*(output_max_val-input_min_val)

+ input_min_val,

’pred’: model.predict(X_val)[:, -1].flatten()

* (input_max_val - input_min_val)

+ input_min_val,

},

index = output_val[(lag + ahead -1):].index

).to_csv(f’thesis_vis/{stock}_type_{type_of_output}_test_GRU.csv’)

69

Code: LSTM Deep Learning Model

import tensorflow as tf

import pandas as pd

from tensorflow import keras

from keras.callbacks import EarlyStopping

from keras.regularizers import l2, l1

from thesis_deeplearning_train_val import X_train, y_train, X_val, y_val, \

lag, ahead, type_of_output,\

input_min_val, input_max_val, output_min_val, output_max_val, output_val, \

stock

tf.random.set_seed(5)

max_epoch = 2000

batch_size = 32

if type_of_output == ’modern’:

def last_step_mse(Y_true, Y_pred):

return keras.metrics.mean_squared_error(Y_true[:, -1], Y_pred[:, -1])

def rnn(n_units = 32, reg = 0.01, learning_rate = 0.01, seed = 5):

model = keras.models.Sequential(

[

keras.layers.LSTM(

n_units,

kernel_initializer = keras.initializers.glorot_uniform(seed),

bias_initializer = keras.initializers.glorot_uniform(seed),

recurrent_initializer = \

keras.initializers.orthogonal(seed=seed),

input_shape = (X_train.shape[1], X_train.shape[-1]),

kernel_regularizer = l2(reg),

return_sequences = True,

),

keras.layers.LSTM(

n_units,

kernel_initializer = keras.initializers.glorot_uniform(seed),

bias_initializer = keras.initializers.glorot_uniform(seed),

recurrent_initializer = keras.initializers.orthogonal(seed=seed),

kernel_regularizer = l2(reg),

return_sequences = True,

),

keras.layers.LSTM(

n_units,

kernel_initializer=keras.initializers.glorot_uniform(seed),

bias_initializer=keras.initializers.glorot_uniform(seed),

recurrent_initializer=keras.initializers.orthogonal(seed=seed),

kernel_regularizer=l2(reg),

return_sequences=True,

),

keras.layers.TimeDistributed(

keras.layers.Dense(

ahead,

kernel_initializer = keras.initializers.glorot_uniform(seed),

70

bias_initializer = keras.initializers.glorot_uniform(seed),

kernel_regularizer = keras.regularizers.l2(reg)

)

)

]

)

model.compile(

optimizer = keras.optimizers.RMSprop(learning_rate = learning_rate,

rho = 0.75),

loss = ’mean_squared_error’,

metrics = [last_step_mse]

)

return model

early_stopping = EarlyStopping(

monitor = ’val_last_step_mse’,

mode = ’min’,

verbose = True,

patience = 100,

min_delta = 1e-5,

restore_best_weights = True

)

"""TRANINING PROCESS"""

retrain_after_crossval = True

if retrain_after_crossval:

model = rnn(

n_units = 8,

reg = 1e-06,

learning_rate = 1e-03,

seed = 5

)

model.fit(

X_train,

y_train,

epochs = max_epoch,

batch_size = batch_size,

validation_data = (X_val, y_val),

callbacks = [early_stopping]

)

print(min(model.history.history[’val_last_step_mse’]))

pd.DataFrame(

{

’origin_reference’: output_val[(lag + ahead - 1):].values.flatten(),

’actual’: y_val[:, -1].flatten()*(output_max_val-input_min_val) +

\ input_min_val,

’pred’: model.predict(X_val)[:, -1].flatten() *
\ (input_max_val - input_min_val)+input_min_val,

},

index = output_val[(lag + ahead -1):].index

).to_csv(f’thesis_vis/{stock}_type_{type_of_output}_test_LSTM.csv’)

else:

def rnn(n_units = 32, reg = 0.01, learning_rate = 0.01, seed = 5):

model = keras.models.Sequential(

71

[

keras.layers.SimpleRNN(

n_units,

kernel_initializer = keras.initializers.glorot_uniform(seed),

bias_initializer = keras.initializers.glorot_uniform(seed),

recurrent_initializer = keras.initializers.orthogonal(seed=seed),

input_shape = (X_train.shape[1], X_train.shape[-1]),

kernel_regularizer = l2(reg),

return_sequences = False

),

keras.layers.Dense(

ahead,

kernel_initializer = keras.initializers.glorot_uniform(seed),

bias_initializer = keras.initializers.glorot_uniform(seed),

kernel_regularizer = keras.regularizers.l2(reg)

)

]

)

model.compile(

optimizer = keras.optimizers.RMSprop(learning_rate = learning_rate,

\ rho = 0.9),

loss = ’mean_squared_error’

)

return model

early_stopping = EarlyStopping(

monitor = ’val_loss’,

mode = ’min’,

verbose = True,

patience = 100,

min_delta = 1e-5,

restore_best_weights = True

)

retrain_after_crossval = True

if retrain_after_crossval:

model = rnn(

n_units = 8,

reg = 1e-06,

learning_rate = 1e-04,

seed = 5

)

model.fit(

X_train,

y_train,

epochs = max_epoch,

batch_size = batch_size,

validation_data = (X_val, y_val),

callbacks = [early_stopping]

)

print(min(model.history.history[’val_loss’]))

pd.DataFrame(

72

{

’origin_reference’: output_val[(lag + ahead - 1):].values.flatten(),

’actual’: y_val[:, -1].flatten()*(output_max_val-input_min_val)

\ + input_min_val,

’pred’: model.predict(X_val)[:, -1].flatten() *
\ (input_max_val - input_min_val)

+ input_min_val

},

index = output_val[(lag + ahead -1):].index

).to_csv(f’thesis_vis/{stock}_type_{type_of_output}_test_LSTM.csv’)

73

Code: RNN Deep Learning Model

import tensorflow as tf

import pandas as pd

from tensorflow import keras

from keras.callbacks import EarlyStopping

from keras.regularizers import l2, l1

from thesis_deeplearning_train_val import X_train, y_train, X_val, y_val, \

lag, ahead, type_of_output,\

input_min_val, input_max_val, output_min_val, output_max_val, output_val, \

stock

tf.random.set_seed(5)

max_epoch = 2000

batch_size = 32

if type_of_output == ’modern’:

def last_step_mse(Y_true, Y_pred):

return keras.metrics.mean_squared_error(Y_true[:, -1], Y_pred[:, -1])

def rnn(n_units = 32, reg = 0.01, learning_rate = 0.01, seed = 5):

model = keras.models.Sequential(

[

keras.layers.SimpleRNN(

n_units,

kernel_initializer = keras.initializers.glorot_uniform(seed),

bias_initializer = keras.initializers.glorot_uniform(seed),

recurrent_initializer = keras.initializers.orthogonal(seed=seed),

input_shape = (X_train.shape[1], X_train.shape[-1]),

kernel_regularizer = l2(reg),

return_sequences = True,

),

keras.layers.SimpleRNN(

n_units,

kernel_initializer = keras.initializers.glorot_uniform(seed),

bias_initializer = keras.initializers.glorot_uniform(seed),

recurrent_initializer = keras.initializers.orthogonal(seed=seed),

kernel_regularizer = l2(reg),

return_sequences = True,

),

keras.layers.SimpleRNN(

n_units,

kernel_initializer=keras.initializers.glorot_uniform(seed),

bias_initializer=keras.initializers.glorot_uniform(seed),

recurrent_initializer=keras.initializers.orthogonal(seed=seed),

kernel_regularizer=l2(reg),

return_sequences=True,

),

keras.layers.TimeDistributed(

keras.layers.Dense(

ahead,

kernel_initializer = keras.initializers.glorot_uniform(seed),

bias_initializer = keras.initializers.glorot_uniform(seed),

kernel_regularizer = keras.regularizers.l2(reg)

)

74

)

]

)

model.compile(

optimizer = keras.optimizers.RMSprop(learning_rate=learning_rate,

\ rho = 0.75),

loss = ’mean_squared_error’,

metrics = [last_step_mse]

)

return model

early_stopping = EarlyStopping(

monitor = ’val_last_step_mse’,

mode = ’min’,

verbose = True,

patience = 100,

min_delta = 1e-5,

restore_best_weights = True

)

"""TRAINING PROCESS"""

retrain_after_crossval = True

if retrain_after_crossval:

model = rnn(

n_units = 8,

reg = 1e-06,

learning_rate = 1e-03,

seed = 5

)

model.fit(

X_train,

y_train,

epochs = max_epoch,

batch_size = batch_size,

validation_data = (X_val, y_val),

callbacks = [early_stopping]

)

print(min(model.history.history[’val_last_step_mse’]))

pd.DataFrame(

{

’origin_reference’: output_val[(lag + ahead - 1):].values.flatten(),

’actual’: y_val[:, -1].flatten()*(output_max_val-input_min_val)

\ + input_min_val,

’pred’: model.predict(X_val)[:, -1].flatten()

\ * (input_max_val - input_min_val)

\ + input_min_val,

},

index = output_val[(lag + ahead -1):].index

).to_csv(f’thesis_vis/{stock}_type_{type_of_output}_test.csv’)

else:

def rnn(n_units = 32, reg = 0.01, learning_rate = 0.01, seed = 5):

75

model = keras.models.Sequential(

[

keras.layers.SimpleRNN(

n_units,

kernel_initializer = keras.initializers.glorot_uniform(seed),

bias_initializer = keras.initializers.glorot_uniform(seed),

recurrent_initializer = keras.initializers.orthogonal(seed=seed),

input_shape = (X_train.shape[1], X_train.shape[-1]),

kernel_regularizer = l2(reg),

return_sequences = False

),

keras.layers.Dense(

ahead,

kernel_initializer = keras.initializers.glorot_uniform(seed),

bias_initializer = keras.initializers.glorot_uniform(seed),

kernel_regularizer = keras.regularizers.l2(reg)

)

]

)

model.compile(

optimizer = keras.optimizers.RMSprop(learning_rate = learning_rate

\ , rho = 0.9),

loss = ’mean_squared_error’

)

return model

early_stopping = EarlyStopping(

monitor = ’val_loss’,

mode = ’min’,

verbose = True,

patience = 100,

min_delta = 1e-5,

restore_best_weights = True

)

retrain_after_crossval = True

if retrain_after_crossval:

model = rnn(

n_units = 8,

reg = 1e-06,

learning_rate = 1e-04,

seed = 5

)

model.fit(

X_train,

y_train,

epochs = max_epoch,

batch_size = batch_size,

validation_data = (X_val, y_val),

callbacks = [early_stopping]

)

print(min(model.history.history[’val_loss’]))

76

pd.DataFrame(

{

’origin_reference’: output_val[(lag + ahead - 1):].values.flatten(),

’actual’: y_val[:, -1].flatten()*(output_max_val-input_min_val)

\ + input_min_val,

’pred’: model.predict(X_val)[:, -1].flatten()

\ * (input_max_val - input_min_val)

\ + input_min_val,

},

index = output_val[(lag + ahead -1):].index

).to_csv(f’thesis_vis/{stock}_type_{type_of_output}_test.csv’)

77

Code: Logit Machine Learning Model

import numpy as np

import pandas as pd

from thesis_classicalML_train_val import X_train, y_train, X_val, y_val, \

index_of_val, ibm_df

from sklearn.model_selection import GridSearchCV

from sklearn.linear_model import LogisticRegression

np.random.seed(5)

logit = LogisticRegression(penalty = ’l2’, tol = 1e-4, max_iter = 1000)

params = {

’C’: [1e-02, 1e-01, 1, 10, 100, 1000, 10000, 100000]

}

grid_seach = GridSearchCV(

estimator = logit,

param_grid = params,

return_train_score = True,

cv = 5

)

grid_results = grid_seach.fit(X_train, y_train)

logit = LogisticRegression(C = 300,penalty = ’l2’)

logit.fit(X_train, y_train)

pd.DataFrame(

{

’actual’: ibm_df[index_of_val],

’predict’: logit.predict(X_val),

},

index = index_of_val

).to_csv(’thesis_vis/IBM_logistic_test.csv’)

78

Code: SAFE Statistical Test for Robustness

import tensorflow as tf

from TS_GRU_frame import get_gru_frame

from TS_LSTM_frame import get_lstm_frame

from TS_RNN_frame import get_rnn_frame

from TS_data_deep_learning import x_2d_train, y_2d_train, x_2d_val, y_2d_val

from TS_data_classical_ml import x_2d_train_classic, y_2d_train_classic,

x_2d_val_classic, y_2d_val_classic

from TS_utils import main_folder_fn

from safeaipackage.check_robustness import Robustness, RobustnessForClassicalML

from sklearn.svm import SVC, SVR

from sklearn.linear_model import LogisticRegression

N_UNITS = 8

REG = 1e-06

LEARNING_RATE = 1e-03

SEED = 5

tf.random.set_seed(SEED)

rnn_frame = get_rnn_frame(x_train_2d=x_2d_train, reg=REG,

learning_rate=LEARNING_RATE, n_units=N_UNITS)

lstm_frame = get_lstm_frame(x_train_2d=x_2d_train, reg=REG,

learning_rate=LEARNING_RATE, n_units=N_UNITS)

gru_frame = get_gru_frame(x_train_2d=x_2d_train, reg=REG,

learning_rate=LEARNING_RATE, n_units=N_UNITS)

rnn_fn = f"{main_folder_fn}/RNN_test.h5"

lstm_fn = f"{main_folder_fn}/LSTM_test.h5"

gru_fn = f"{main_folder_fn}/GRU_test.h5"

Restore all models

lstm_frame.load_weights(lstm_fn)

gru_frame.load_weights(gru_fn)

rnn_frame.load_weights(rnn_fn)

svc = SVC(C=0.1, max_iter=10000)

svm = SVR(C=0.1, max_iter=10000)

logit = LogisticRegression(penalty = ’l2’, tol = 1e-4,

max_iter = 10000, C=10000)

lstm_robust = Robustness(xtrain=x_2d_train, ytrain=y_2d_train,

xtest=x_2d_val, ytest=y_2d_val, model=lstm_frame)

gru_robust = Robustness(xtrain=x_2d_train, ytrain=y_2d_train,

xtest=x_2d_val, ytest=y_2d_val, model=gru_frame)

rnn_robust = Robustness(xtrain=x_2d_train, ytrain=y_2d_train,

xtest=x_2d_val, ytest=y_2d_val, model=rnn_frame)

print(f"--- P-VALUE ROBUST LSTM-GRU")

print(lstm_robust.rgr_statistic_test(problemtype="prediction",

79

secondmodel=gru_frame))

print("-" * 120)

print(f"--- P-VALUE ROBUST LSTM-RNN")

print(lstm_robust.rgr_statistic_test(problemtype="prediction",

secondmodel=rnn_frame))

print("-" * 120)

print(f"--- P-VALUE ROBUST LSTM-SVM")

print(lstm_robust.rgr_statistic_test(problemtype="prediction",

secondmodel=svm))

print("-" * 120)

print(f"--- P-VALUE ROBUST GRU-RNN")

print(gru_robust.rgr_statistic_test(problemtype="prediction",

secondmodel=rnn_frame))

print(f"--- P-VALUE ROBUST GRU-SVM")

print(gru_robust.rgr_statistic_test(problemtype="prediction",

secondmodel=svm))

print("-" * 120)

print(f"--- P-VALUE ROBUST RNN-SVM")

print(rnn_robust.rgr_statistic_test(problemtype="prediction",

secondmodel=svm))

print(f"--- P-VALUE ROBUST SVC-LOGIT")

svm_robust = RobustnessForClassicalML(xtrain=x_2d_train_classic,

ytrain=y_2d_train_classic,

xtest=x_2d_val_classic, ytest=y_2d_val_classic,

model=svc)

print(svm_robust.rgr_statistic_test(problemtype="classification",

secondmodel=logit, perturbation_percentage=0.45))

80

Code: SAFE AI GRU

import tensorflow as tf

from TS_GRU_frame import get_gru_frame

from TS_data_deep_learning import x_2d_train, y_2d_train,

x_2d_val, y_2d_val

from TS_utils import main_folder_fn

from safeaipackage.check_accuracy import Accuracy

from safeaipackage.check_robustness import Robustness

from safeaipackage.check_explainability import Explainability

N_UNITS = 8

REG = 1e-06

LEARNING_RATE = 1e-03

SEED = 5

tf.random.set_seed(SEED)

fn = f"{main_folder_fn}/GRU_test.h5"

gru_frame = get_gru_frame(x_train_2d=x_2d_train, reg=REG,

learning_rate=LEARNING_RATE, n_units=N_UNITS)

Load Weights to get pre-trained model;

gru_frame.load_weights(fn)

Safe AI Modeling;

print(f"-- ACCURACY: ")

gru_accuracy = Accuracy(xtrain=x_2d_train, ytrain=y_2d_train,

xtest=x_2d_val, ytest=y_2d_val, model=gru_frame)

print(gru_accuracy.rga())

print("-" * 120)

print(f"-- ROBUSTNESS: ")

gru_robustness = Robustness(xtrain=x_2d_train, ytrain=y_2d_train,

xtest=x_2d_val, ytest=y_2d_val, model=gru_frame)

print(gru_robustness.rgr_all(perturbation_percentage=0.10))

print(f"--- EXPLAIN")

ex = Explainability(xtrain=x_2d_train, ytrain=y_2d_train,

xtest=x_2d_val, ytest=y_2d_val, model=gru_frame)

ex.rge()

81

Code: SAFE AI LSTM

import tensorflow as tf

from TS_LSTM_frame import get_lstm_frame

from TS_data_deep_learning import x_2d_train, y_2d_train,

x_2d_val, y_2d_val

from TS_utils import main_folder_fn

from safeaipackage.check_accuracy import Accuracy

from safeaipackage.check_robustness import Robustness

from safeaipackage.check_explainability import Explainability

N_UNITS = 8

REG = 1e-06

LEARNING_RATE = 1e-03

SEED = 5

tf.random.set_seed(SEED)

fn = f"{main_folder_fn}/LSTM_test.h5"

lstm_frame = get_lstm_frame(x_train_2d=x_2d_train,

reg=REG, learning_rate=LEARNING_RATE, n_units=N_UNITS)

lstm_frame.load_weights(fn)

Safe AI Modeling;

print(f"-- ACCURACY: ")

gru_accuracy = Accuracy(xtrain=x_2d_train, ytrain=y_2d_train,

xtest=x_2d_val, ytest=y_2d_val, model=lstm_frame)

print(gru_accuracy.rga())

print("-" * 120)

print(f"-- ROBUSTNESS: ")

gru_robustness = Robustness(xtrain=x_2d_train, ytrain=y_2d_train,

xtest=x_2d_val, ytest=y_2d_val, model=lstm_frame)

print(gru_robustness.rgr_all(perturbation_percentage=0.10))

print(f"--- EXPLAIN")

ex = Explainability(xtrain=x_2d_train, ytrain=y_2d_train,

xtest=x_2d_val, ytest=y_2d_val, model=lstm_frame)

ex.rge()

82

Code: SAFE AI RNN

import tensorflow as tf

from TS_RNN_frame import get_rnn_frame

from TS_data_deep_learning import x_2d_train,

y_2d_train, x_2d_val, y_2d_val

from TS_utils import main_folder_fn

from safeaipackage.check_accuracy import Accuracy

from safeaipackage.check_robustness import Robustness

from safeaipackage.check_explainability import Explainability

N_UNITS = 8

REG = 1e-06

LEARNING_RATE = 1e-03

SEED = 5

tf.random.set_seed(SEED)

fn = f"{main_folder_fn}/RNN_test.h5"

rnn_frame = get_rnn_frame(x_train_2d=x_2d_train, reg=REG,

learning_rate=LEARNING_RATE, n_units=N_UNITS)

rnn_frame.load_weights(fn)

Safe AI Modeling;

print(f"-- ACCURACY: ")

gru_accuracy = Accuracy(xtrain=x_2d_train, ytrain=y_2d_train,

xtest=x_2d_val, ytest=y_2d_val, model=rnn_frame)

print(gru_accuracy.rga())

print("-" * 120)

print(f"-- ROBUSTNESS: ")

gru_robustness = Robustness(xtrain=x_2d_train, ytrain=y_2d_train,

xtest=x_2d_val, ytest=y_2d_val, model=rnn_frame)

print(gru_robustness.rgr_all(perturbation_percentage=0.10))

print("-" * 120)

print(f"--- EXPLAIN")

ex = Explainability(xtrain=x_2d_train, ytrain=y_2d_train,

xtest=x_2d_val, ytest=y_2d_val, model=rnn_frame)

ex.rge()

83

Code: SAFE AI SVM

import copy

import numpy as np

from sklearn.svm import SVC

from safeaipackage.check_accuracy import AccuracyForClassicalML

from safeaipackage.check_robustness import RobustnessForClassicalML

from safeaipackage.check_explainability import ExplainabilityForClassicalML

from TS_data_classical_ml import x_2d_train,

y_2d_train, x_2d_val, y_2d_val

np.random.seed(5)

X_train = copy.deepcopy(x_2d_train)

y_train = copy.deepcopy(y_2d_train)

X_val = copy.deepcopy(x_2d_val)

y_val = copy.deepcopy(y_2d_val)

np.random.seed(5)

svc = SVC(C = 0.1, max_iter = 10000)

svc.fit(X_train, y_train)

svc.score(X_val, y_val)

svm_acc = AccuracyForClassicalML(xtrain=X_train,

ytrain=y_train, xtest=X_val, ytest=y_val, model=svc)

print("--- ACCURACY: ")

print(svm_acc.rga())

print("P-value")

print(svm_acc.rga_statistic_test(problemtype="prediction"))

print("-" * 120)

robustness = RobustnessForClassicalML(xtrain=X_train,

ytrain=y_train, xtest=X_val, ytest=y_val, model=svc)

print("-- ROBUSTNESS")

print(robustness.rgr_all(perturbation_percentage=0.10))

print("--- EXPLAINABLE")

ex = ExplainabilityForClassicalML(xtrain=X_train, ytrain=y_train,

xtest=X_val, ytest=y_val, model=svc)

ex.rge()

84

Code: SAFE AI LOGIT

import copy

import numpy as np

from sklearn.linear_model import LogisticRegression

from TS_data_classical_ml import x_2d_train,

y_2d_train, x_2d_val, y_2d_val

from safeaipackage.check_accuracy import AccuracyForClassicalML

from safeaipackage.check_explainability import ExplainabilityForClassicalML

from safeaipackage.check_robustness import RobustnessForClassicalML

np.random.seed(5)

logit = LogisticRegression(penalty = ’l2’, tol = 1e-4, max_iter = 10000, C=10000)

X_train = copy.deepcopy(x_2d_train)

y_train = copy.deepcopy(y_2d_train)

X_val = copy.deepcopy(x_2d_val)

y_val = copy.deepcopy(y_2d_val)

logit.fit(X_train, y_train)

accuracy_obj = AccuracyForClassicalML(xtrain=X_train,

ytrain=y_train, xtest=X_val, ytest=y_val, model=logit)

print(f"--- ACCURACY: ")

print(accuracy_obj.rga())

print("-" * 120)

print(f"--- ROBUSTESS: ")

robustness_obj = RobustnessForClassicalML(xtrain=X_train,

ytrain=y_train, xtest=X_val, ytest=y_val, model=logit)

print(robustness_obj.rgr_all(perturbation_percentage=0.11))

print("-" * 120)

print("--- EXPLAINABILITY")

explain =ExplainabilityForClassicalML(xtrain=X_train, ytrain=y_train,

xtest=X_val, ytest=y_val, model=logit)

explain.rge()

85

Code Exam: SVM Machine Learning Model

import numpy as np

from thesis_classicalML_train_val import X_train, y_train,

\ X_val, y_val, index_of_val, ibm_df

from sklearn.model_selection import GridSearchCV

import pandas as pd

from sklearn.svm import SVC

np.random.seed(5)

svc = SVC(C = 1600, max_iter = 10000)

svc.fit(X_train, y_train)

svc.score(X_val, y_val)

pd.DataFrame(

{

’actual’: ibm_df[index_of_val],

’predict’: svc.predict(X_val),

},

index = index_of_val

).to_csv(’thesis_vis/IBM_svc_test.csv’)

86

Visualization Snipets of Code in R

Code: Visualization For Predcitions of GRU Model

cat(’\f’)

rm(list = ls())

library(dplyr)

library(tidyverse)

library(lubridate)

library(grDevices)

df <- readxl::read_xlsx(’thesis_vis/ibm_gru_strategy.xlsx’)

df <- df[-1,]

% Visual Here:

pdf_file <- ’thesis_vis/ibm_gru_predict.pdf’

cairo_pdf(bg = ’grey98’, pdf_file, width = 9.6, height = 5.8)

par(

omi = c(0.25, 0.5, 0.75, 0.6),

mai = c(0.25, 0.5, 0.05, 0.8),

family = ’Lato Light’,

las = 1,

mgp = c(1, 1, 0)

)

par(cex = 0.85, bg = ’white’)

myColor1 <- ’brown’

myColor2 <- ’blue’

myColor3 <- ’red’

myColor4 <- ’green’

min_value <- min(df$actual)

max_value <- max(df$actual)

plot(as.Date(df$Date), df$actual, type = ’n’,

axes = FALSE, xlab = "", ylab = ’’,

col = rgb(255, 97, 0, 150, maxColorValue = 255),

lwd = 1.5)

points(as.Date(df$Date), df$actual, col = myColor1, lwd = 1, type = ’l’)

points(as.Date(df$Date), df$actual, col = myColor1, pch = 19, cex = 0.5)

points(as.Date(df$Date), df$pred, col = myColor2, lwd = 1, type = ’l’)

points(as.Date(df$Date), df$pred, col = myColor2, pch = 19, cex = 0.5)

% # Legend,

legend(as.Date(’2020-10-20’), 100, c(’Original price of IBM’, ’Predicted by GRU’),

border = NA, pch = c(19, 19), col = c(myColor1, myColor2), cex = 0.8,

\ bty = ’n’)

% # Axis;

axis(1, col = rgb(105, 105, 105, maxColorValue = 255), col.

\ ticks = rgb(105, 105, 105, maxColorValue = 255),

at = seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’), length.out = 60),

cex.axis = 0.8,

lwd.ticks = 0.15, tck = 0.015, family = ’Lato Light’,

labels = format(seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’),

\ length.out = 60), ’%b\n%Y’))

87

axis(2, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

lwd.ticks = 0.15, cex.axis = 0.8, at = round(seq(min_value, max_value-5,

\ length.out = 5), 0))

% # mtext;

mtext(’The original price of IBM and Its prediction by GRU model’,

3, line = 1.6, adj = 0.05, cex = 1.09, family = ’Lato Black’, outer = TRUE)

mtext(’The model predicted IBM price from 02/2019 to 07/2020’,

3, line = -0.0, adj = 0.06, cex = 0.85, family = ’Lato Light’, outer = TRUE,

\ font = 3)

dev.off()

88

Code: Visualization For Predcitions of LSTM Model

cat(’\f’)

rm(list = ls())

library(dplyr)

library(tidyverse)

library(lubridate)

library(grDevices)

df <- readxl::read_xlsx(’thesis_vis/ibm_lstm_strategy.xlsx’)

df <- df[-1,]

Visual here;

pdf_file <- ’thesis_vis/ibm_lstm_predict.pdf’

cairo_pdf(bg = ’grey98’, pdf_file, width = 9.6, height = 5.8)

par(

omi = c(0.25, 0.5, 0.75, 0.8),

mai = c(0.25, 0.5, 0.05, 0.6),

family = ’Lato Light’,

las = 1,

mgp = c(1, 1, 0)

)

par(cex = 0.85, bg = ’white’)

myColor1 <- ’brown’

myColor2 <- ’blue’

myColor3 <- ’red’

myColor4 <- ’green’

min_value <- min(df$actual)

max_value <- max(df$actual)

plot(as.Date(df$Date), df$actual, type = ’n’, axes = FALSE,

xlab = "", ylab = ’’,

col = rgb(255, 97, 0, 150, maxColorValue = 255),

lwd = 1.5)

points(as.Date(df$Date), df$actual, col = myColor1, lwd = 1, type = ’l’)

points(as.Date(df$Date), df$actual, col = myColor1, pch = 19, cex = 0.5)

points(as.Date(df$Date), df$pred, col = myColor2, lwd = 1, type = ’l’)

points(as.Date(df$Date), df$pred, col = myColor2, pch = 19, cex = 0.5)

% # Legend,

legend(as.Date(’2020-10-20’), 100,

c(’Original price of IBM’, ’Predicted by LSTM’),

border = NA, pch = c(19, 19),

col = c(myColor1, myColor2),

cex = 0.8, bty = ’n’)

Axis;

axis(1, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

at = seq(as.Date(’2019-02-01’),

as.Date(’2021-03-01’), length.out = 60),

cex.axis = 0.8,

lwd.ticks = 0.15, tck = 0.015, family = ’Lato Light’,

labels = format(seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’),

length.out = 60), ’%b\n%Y’))

axis(2, col = rgb(105, 105, 105, maxColorValue = 255),

89

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

lwd.ticks = 0.15, cex.axis = 0.8, at = round(seq(min_value, max_value-5,

length.out = 5), 0))

%# mtext;

mtext(’The original price of IBM and Its prediction by LSTM model’,

3, line = 1.6, adj = 0.05, cex = 1.09,

family = ’Lato Black’, outer = TRUE)

mtext(’The model predicted IBM price from 02/2019 to 07/2020’,

3, line = -0.0, adj = 0.06, cex = 0.85,

family = ’Lato Light’, outer = TRUE, font = 3)

dev.off()

90

Code Exam: Visualization For Predcitions of RNN Model

cat(’\f’)

rm(list = ls())

library(dplyr)

library(tidyverse)

library(lubridate)

library(grDevices)

df <- readxl::read_xlsx(’thesis_vis/ibm_rnn_strategy.xlsx’)

df <- df[-1,]

% # Visual here;

pdf_file <- ’thesis_vis/ibm_rnn_predict.pdf’

cairo_pdf(bg = ’grey98’, pdf_file, width = 9.6, height = 5.8)

par(

omi = c(0.25, 0.5, 0.75, 0.8),

mai = c(0.25, 0.5, 0.05, 0.6),

family = ’Lato Light’,

las = 1,

mgp = c(1, 1, 0)

)

par(cex = 0.85, bg = ’white’)

myColor1 <- ’brown’

myColor2 <- ’blue’

myColor3 <- ’red’

myColor4 <- ’green’

min_value <- min(df$actual)

max_value <- max(df$actual)

plot(as.Date(df$Date), df$actual, type = ’n’, axes = FALSE, xlab = "",

ylab = ’’, col = rgb(255, 97, 0, 150, maxColorValue = 255), lwd = 1.5)

points(as.Date(df$Date), df$actual, col = myColor1, lwd = 1, type = ’l’)

points(as.Date(df$Date), df$actual, col = myColor1, pch = 19, cex = 0.5)

points(as.Date(df$Date), df$pred, col = myColor2, lwd = 1, type = ’l’)

points(as.Date(df$Date), df$pred, col = myColor2, pch = 19, cex = 0.5)

% # Legend,

legend(as.Date(’2020-10-20’), 100, c(’Original price of IBM’, ’Predicted by RNN’),

border = NA, pch = c(19, 19), col = c(myColor1, myColor2), cex = 0.8,

bty = ’n’)

% # Axis;

axis(1, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

at = seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’),

length.out = 60),

cex.axis = 0.8,

lwd.ticks = 0.15, tck = 0.015, family = ’Lato Light’,

labels = format(seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’),

length.out = 60), ’%b\n%Y’))

91

axis(2, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

lwd.ticks = 0.15, cex.axis = 0.8, at = round(seq(min_value, max_value-5,

length.out = 5), 0))

% # mtext;

mtext(’The original price of IBM and Its prediction by RNN model’,

3, line = 1.6, adj = 0.05, cex = 1.09, family = ’Lato Black’, outer = TRUE)

mtext(’The model predicted IBM price from 02/2019 to 07/2020’,

3, line = -0.0, adj = 0.06, cex = 0.85, family = ’Lato Light’, outer = TRUE,

font = 3)

dev.off()

92

Code: Visualization For Cross-Validation in Machine Learning Model Selection:

cat(’\f’)

rm(list = ls())

library(dplyr)

library(tidyverse)

library(lubridate)

library(grDevices)

sku <- ’DB6F’

df <- read_csv(paste0(’yes4all/topsku/’, sku, ’.csv’))

names(df) <- c(’Time’, ’Qty’)

df$Time <- format(

seq(as.POSIXct(’2019-01-01’), by = ’week’, length.out = dim(df)[1]),

’%Y-%m-%d’

)

Visualise here;

font1 <- ’Times New Roman’

font2 <- ’Lato Light’

pdf_file <- ’thesis_vis/cross_val.pdf’

cairo_pdf(bg = ’grey98’, pdf_file, width = 9, height = 5.8)

par(

omi = c(0.05, 0.5, 0.75, 1.0),

mai = c(0.05, 0.5, 0.05, 0.5),

family = ’Lato Light’,

las = 1,

mgp = c(1, 1, 0)

)

par(cex = 0.85, bg = ’white’)

#rgb(240, 240, 240, maxColorValue = 255)

myColor1 <- ’brown’

myColor2 <- ’blue’

myColor3 <- ’red’

plot(as.Date(df$Time), df$Qty, type = ’n’, axes = FALSE, xlab = "", ylab = "",

col = rgb(255, 97, 0, 150, maxColorValue = 255), lwd = 1.5)

rectangular: type 1 cross-validation;

n <- 1250

rect(as.Date(’2019-01-01’), n-50, as.Date(’2019-01-01’)+400, n, col = myColor2,

border = NA)

rect(as.Date(’2020-02-01’), n-50, as.Date(’2020-02-01’)+100, n, col = myColor3,

border = NA)

rect(as.Date(’2019-01-01’)+100, n-150, as.Date(’2019-01-01’)+500, n-100,

col = myColor2, border = NA)

rect(as.Date(’2019-01-01’)+500, n-150, as.Date(’2019-01-01’)+600, n-100,

col = myColor3, border = NA)

rect(as.Date(’2019-01-01’)+200, n-250, as.Date(’2019-01-01’)+600, n-200,

col = myColor2, border = NA)

rect(as.Date(’2019-01-01’)+600, n-250, as.Date(’2019-01-01’)+700, n-200,

col = myColor3, border = NA)

rect(as.Date(’2019-01-01’)+300, n-350, as.Date(’2019-01-01’)+700, n-300,

93

col = myColor2, border = NA)

rect(as.Date(’2019-01-01’)+700, n-350, as.Date(’2019-01-01’)+800, n-300,

col = myColor3, border = NA)

Rect: Type2 cross-validation:

m <- 700

rect(as.Date(’2019-01-01’), m-50, as.Date(’2019-01-01’)+400, m,col = myColor2,

border = NA)

rect(as.Date(’2019-01-01’)+400, m-50, as.Date(’2019-01-01’)+500, m, col = myColor3,

border = NA)

rect(as.Date(’2019-01-01’), m-150, as.Date(’2019-01-01’)+500, m-100,col = myColor2,

border = NA)

rect(as.Date(’2019-01-01’)+500, m-150, as.Date(’2019-01-01’)+600, m-100,

col = myColor3,

border = NA)

rect(as.Date(’2019-01-01’), m-250, as.Date(’2019-01-01’)+600, m-200,

col = myColor2,

border = NA)

rect(as.Date(’2019-01-01’)+600, m-250, as.Date(’2019-01-01’)+700, m-200,

col = myColor3,

border = NA)

rect(as.Date(’2019-01-01’), m-350, as.Date(’2019-01-01’)+700, m-300,

col = myColor2,

border = NA)

rect(as.Date(’2019-01-01’)+700, m-350, as.Date(’2019-01-01’)+800, m-300,

col = myColor3,

border = NA)

Legend;

p <- 200

legend(as.Date(’2020-10-01’), p, c(’Trained Data’, ’Validated Data’),

border = NA, pch = 15, col = c(myColor2, myColor3), cex = 0.95,

bty = ’n’)

Text;

text(as.Date(’2019-01-01’), n+80, ’Type 1: Time Series Cross-Validation’,

adj = 0, xpd = TRUE, cex = 1.01, font = 3)

text(as.Date(’2019-01-01’), m+80, ’Type 2: Time Series Cross-Validation’,

adj = 0, xpd = TRUE, cex = 1.01, font = 3)

Margin text;

mtext(’Cross-Validation of the Supervised Learning form of the Time Series Data’,

3, line = 0, adj = 0.25, cex = 1.2, family = ’Lato Black’,

outer = TRUE)

mtext(’These are 2 examples of "4-folds" cross-validation in Time Series Data’,

3, line = -1.6, adj = 0.1, cex = 0.9, family = ’Lato Light’,

outer = TRUE, font = 3)

dev.off()

94

Code Exam: Visualization For GRU Model Long/Short Positions

cat(’\f’)

rm(list = ls())

library(dplyr)

library(tidyverse)

library(lubridate)

library(grDevices)

df <- readxl::read_xlsx(’thesis_vis/ibm_gru_strategy.xlsx’)

df <- df[-1,]

Visual here;

pdf_file <- ’thesis_vis/ibm_gru_place_position.pdf’

cairo_pdf(bg = ’grey98’, pdf_file, width = 9.6, height = 5.8)

par(

omi = c(0.25, 0.5, 0.75, 0.6),

mai = c(0.25, 0.5, 0.05, 0.8),

family = ’Lato Light’,

las = 1,

mgp = c(1, 1, 0)

)

par(cex = 0.85, bg = ’white’)

myColor1 <- ’brown’

myColor2 <- ’blue’

myColor3 <- ’red’

myColor4 <- ’green’

min_value <- min(df$actual)

max_value <- max(df$actual)

plot(as.Date(df$Date), df$actual, type = ’n’, axes = FALSE, xlab = "",

ylab ="", col = rgb(255, 97, 0, 150, maxColorValue = 255), lwd = 1.5)

points(as.Date(df$Date), df$actual, lwd = 1, type = ’l’, col = myColor1)

points(as.Date(df$Date), df$actual, col = myColor1, pch = 19, cex = 0.5)

points(as.Date(df$Date), if_else(df$strategy == "buy", df$actual, NULL),

col = myColor4, pch = 17, cex = 1)

Legend,

legend(as.Date(’2020-06-20’), 100,

c(’Original price of IBM’, ’Long Position by GRU-based model’),

border = NA, pch = c(19, 17), col = c(myColor1, myColor4),

cex = 0.8, bty = ’n’)

Axis;

axis(1, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

at = seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’), length.out = 60),

cex.axis = 0.8,

lwd.ticks = 0.15, tck = 0.015, family = ’Lato Light’,

labels = format(seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’),

length.out = 60), ’%b\n%Y’))

95

axis(2, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

lwd.ticks = 0.15, cex.axis = 0.8,

at = round(seq(min_value, max_value-5, length.out = 5), 2))

mtext;

mtext(’The original price of IBM and Long positions by GRU-based Strategy’,

3, line = 1.6, adj = 0.05, cex = 1.09, family = ’Lato Black’, outer = TRUE)

mtext(’The Strategy has been placed long only, short-sell is restricted’,

3, line = -0.0, adj = 0.06, cex = 0.85, family = ’Lato Light’, outer = TRUE,

font = 3)

dev.off()

96

Code: Visualization For Profit Loss of GRU Model Strategies

cat(’\f’)

rm(list = ls())

library(dplyr)

library(tidyverse)

library(lubridate)

library(grDevices)

df <- readxl::read_xlsx(’thesis_vis/ibm_gru_strategy.xlsx’)

df <- df[-1,]

Visual here;

pdf_file <- ’thesis_vis/ibm_gru_strategy.pdf’

cairo_pdf(bg = ’grey98’, pdf_file, width = 9.6, height = 5.8)

par(

omi = c(0.25, 0.5, 0.75, 0.6),

mai = c(0.25, 0.5, 0.05, 0.8),

family = ’Lato Light’,

las = 1,

mgp = c(1, 1, 0)

)

par(cex = 0.85, bg = ’white’)

myColor1 <- ’brown’

myColor2 <- ’blue’

myColor3 <- ’red’

myColor4 <- ’green’

min_value <- min(min(df$acc_buyhold_return), min(df$acc_strategy_return))

max_value <- max(max(df$acc_buyhold_return), max(df$acc_strategy_return))

plot(as.Date(df$Date), df$acc_buyhold_return, type = ’n’, axes = FALSE,

xlab = "", ylab = ’’,

col = rgb(255, 97, 0, 150, maxColorValue = 255), lwd = 1.5,

ylim = c(min_value+0.01, max_value-0.01))

points(as.Date(df$Date), df$acc_buyhold_return,

col = myColor1, lwd = 1, type = ’l’)

points(as.Date(df$Date), df$acc_buyhold_return,

col = myColor1, pch = 19, cex = 0.6)

points(as.Date(df$Date), df$acc_strategy_return,

col = myColor2, lwd = 1, type = ’l’)

points(as.Date(df$Date), df$acc_strategy_return,

col = myColor2, pch = 19, cex = 0.6)

Legend;

legend(as.Date(’2020-06-20’), -0.15,

c(’Accumulated return of buy and hold Strategy’,

’Accumulated return of GRU-based Strategy’),

border = NA, pch = 19, col = c(myColor1, myColor2), cex = 0.8, bty = ’n’)

mtext;

mtext(’Accumulated Return of IBM stock with buy & hold and GRU-based Strategy’,

3, line = 1.6, adj = 0.05, cex = 1.09, family = ’Lato Black’, outer = TRUE)

97

mtext(’Both Strategies were validated from 02/2019 to 03/2021’,

3, line = -0, adj = 0.06, cex = 0.85, family = ’Lato Light’, outer = TRUE,

font = 3)

Axis;

axis(1, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

at = seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’),

length.out = 60), cex.axis = 0.8,

lwd.ticks = 0.15, tck = 0.015, family = ’Lato Light’,

labels = format(seq(as.Date(’2019-02-01’),

as.Date(’2021-03-01’), length.out = 60), ’%b\n%Y’))

axis(2, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

lwd.ticks = 0.15, cex.axis = 0.8,

at = round(seq(min_value, max_value-0.05, length.out = 5), 2),

labels =

paste0(round(seq(min_value, max_value-0.05, length.out = 5), 2)*100, ’%’))

dev.off()

98

Code Exam: Visualization For Profit Loss of Logistic Model Strategies

cat(’\f’)

rm(list = ls())

library(dplyr)

library(tidyverse)

library(lubridate)

library(grDevices)

df <- readxl::read_xlsx(’thesis_vis/ibm_logistic_strategy.xlsx’)

df <- df[-1,]

Visual here;

pdf_file <- ’thesis_vis/ibm_logistic_strategy.pdf’

cairo_pdf(bg = ’grey98’, pdf_file, width = 9.6, height = 5.8)

par(

omi = c(0.25, 0.55, 0.75, 0.6),

mai = c(0.25, 0.55, 0.05, 0.8),

family = ’Lato Light’,

las = 1,

mgp = c(1, 1, 0)

)

par(cex = 0.85, bg = ’white’)

myColor1 <- ’brown’

myColor2 <- ’blue’

myColor3 <- ’red’

myColor4 <- ’green’

min_value <- min(min(df$acc_buyhold_return), min(df$acc_strategy_return))

max_value <- max(max(df$acc_buyhold_return), max(df$acc_strategy_return))

plot(as.Date(df$Date), df$acc_buyhold_return, type = ’n’, axes = FALSE,

xlab = "", ylab = ’’,

col = rgb(255, 97, 0, 150, maxColorValue = 255), lwd = 1.5,

ylim = c(min_value+0.01, max_value-0.01))

points(as.Date(df$Date), df$acc_buyhold_return, col = myColor1, lwd = 1,

type = ’l’)

points(as.Date(df$Date), df$acc_buyhold_return, col = myColor1, pch = 19,

cex = 0.6)

points(as.Date(df$Date), df$acc_strategy_return, col = myColor2, lwd = 1,

type = ’l’)

points(as.Date(df$Date), df$acc_strategy_return, col = myColor2, pch = 19,

cex = 0.6)

Legend;

legend(as.Date(’2020-06-30’), -0.20,

c(’Accumulated return of buy and hold Strategy’,

’Accumulated return of LR-based Strategy’),

border = NA, pch = 19, col = c(myColor1, myColor2), cex = 0.8, bty = ’n’)

mtext;

mtext(’Accumulated Return of IBM stock with buy & hold and LR-based Strategy’,

3, line = 2.6, adj = 0.05, cex = 1.09, family = ’Lato Black’, outer = TRUE)

99

mtext(’Both Strategies were validated from 02/2019 to 03/2021’,

3, line = 1, adj = 0.06, cex = 0.85, family = ’Lato Light’, outer = TRUE,

font = 3)

Axis;

axis(1, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

at = seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’),

length.out = 60),

cex.axis = 0.8,

lwd.ticks = 0.15, tck = 0.015, family = ’Lato Light’,

labels = format(seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’),

length.out = 60), ’%b\n%Y’))

axis(2, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

lwd.ticks = 0.15, cex.axis = 0.8,

at = round(seq(min_value, max_value-0.05, length.out = 5), 2),

labels = paste0(round(seq(min_value, max_value-0.05, length.out = 5), 2)*100,

’%’))

dev.off()

100

Code Exam: Visualization For Long Short Position of Logistic Model

cat(’\f’)

rm(list = ls())

library(dplyr)

library(tidyverse)

library(lubridate)

library(grDevices)

df <- readxl::read_xlsx(’thesis_vis/ibm_logistic_strategy.xlsx’)

df <- df[-1,]

Visual here;

pdf_file <- ’thesis_vis/ibm_logistic_place_position.pdf’

cairo_pdf(bg = ’grey98’, pdf_file, width = 9.6, height = 5.8)

par(

omi = c(0.25, 0.5, 0.75, 0.6),

mai = c(0.25, 0.5, 0.05, 0.8),

family = ’Lato Light’,

las = 1,

mgp = c(1, 1, 0)

)

par(cex = 0.85, bg = ’white’)

myColor1 <- ’brown’

myColor2 <- ’blue’

myColor3 <- ’red’

myColor4 <- ’green’

min_value <- min(df$actual)

max_value <- max(df$actual)

plot(as.Date(df$Date), df$actual, type = ’n’, axes = FALSE, xlab = "", ylab = ’’,

col = rgb(255, 97, 0, 150, maxColorValue = 255), lwd = 1.5)

points(as.Date(df$Date), df$actual, lwd = 1, type = ’l’, col = myColor1)

points(as.Date(df$Date), df$actual, col = myColor1, pch = 19, cex = 0.5)

points(as.Date(df$Date), if_else(df$strategy == "buy", df$actual, NULL),

col = myColor4, pch = 17, cex = 1)

Legend,

legend(as.Date(’2020-06-20’), 100,

c(’Original price of IBM’, ’Long Position by LR-based Strategy’),

border = NA, pch = c(19, 17),

col = c(myColor1, myColor4), cex = 0.8, bty = ’n’)

Axis;

axis(1, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

at = seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’), length.out = 60),

cex.axis = 0.8,

lwd.ticks = 0.15, tck = 0.015, family = ’Lato Light’,

labels = format(seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’),

length.out = 60), ’%b\n%Y’))

101

axis(2, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

lwd.ticks = 0.15, cex.axis = 0.8,

at = round(seq(min_value, max_value-5, length.out = 5), 0))

mtext;

mtext(’The original price of IBM and Long positions by based LR-based Strategy’,

3, line = 2.6, adj = 0.05, cex = 1.09, family = ’Lato Black’, outer = TRUE)

mtext(’The Strategy has been placed long only, short-sell is restricted’,

3, line = 1, adj = 0.06, cex = 0.85,

family = ’Lato Light’, outer = TRUE, font = 3)

dev.off()

102

Code: Visualization For Profit or Loss of LSTM Model

cat(’\f’)

rm(list = ls())

library(dplyr)

library(tidyverse)

library(lubridate)

library(grDevices)

df <- readxl::read_xlsx(’thesis_vis/ibm_lstm_strategy.xlsx’)

df <- df[-1,]

Visual here;

pdf_file <- ’thesis_vis/ibm_lstm_strategy.pdf’

cairo_pdf(bg = ’grey98’, pdf_file, width = 9.6, height = 5.8)

par(

omi = c(0.25, 0.5, 0.75, 0.6),

mai = c(0.25, 0.5, 0.05, 0.8),

family = ’Lato Light’,

las = 1,

mgp = c(1, 1, 0)

)

par(cex = 0.85, bg = ’white’)

myColor1 <- ’brown’

myColor2 <- ’blue’

myColor3 <- ’red’

myColor4 <- ’green’

min_value <- min(min(df$acc_buyhold_return), min(df$acc_strategy_return))

max_value <- max(max(df$acc_buyhold_return), max(df$acc_strategy_return))

plot(as.Date(df$Date), df$acc_buyhold_return, type = ’n’, axes = FALSE,

xlab = "", ylab = ’’,

col = rgb(255, 97, 0, 150, maxColorValue = 255), lwd = 1.5,

ylim = c(min_value+0.01, max_value-0.01))

points(as.Date(df$Date), df$acc_buyhold_return,

col = myColor1, lwd = 1, type = ’l’)

points(as.Date(df$Date), df$acc_buyhold_return,

col = myColor1, pch = 19, cex = 0.6)

points(as.Date(df$Date), df$acc_strategy_return,

col = myColor2, lwd = 1, type = ’l’)

points(as.Date(df$Date), df$acc_strategy_return,

col = myColor2, pch = 19, cex = 0.6)

Legend;

legend(as.Date(’2020-06-20’), -0.15,

c(’Accumulated return of buy and hold Strategy’,

’Accumulated return of LSTM-based Strategy’),

border = NA, pch = 19, col = c(myColor1, myColor2),

cex = 0.8, bty = ’n’)

mtext;

mtext(’Accumulated Return of IBM stock with buy and hold and LSTM-based Strategy’,

103

3, line = 1.6, adj = 0.05, cex = 1.09,

family = ’Lato Black’, outer = TRUE)

mtext(’Both Strategies were validated from 02/2019 to 03/2021’,

3, line = -0, adj = 0.06, cex = 0.85,

family = ’Lato Light’, outer = TRUE, font = 3)

Axis;

axis(1, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

at = seq(as.Date(’2019-02-01’),

as.Date(’2021-03-01’), length.out = 60), cex.axis = 0.8,

lwd.ticks = 0.15, tck = 0.015, family = ’Lato Light’,

labels = format(seq(as.Date(’2019-02-01’),

as.Date(’2021-03-01’), length.out = 60), ’%b\n%Y’))

axis(2, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

lwd.ticks = 0.15, cex.axis = 0.8,

at = round(seq(min_value, max_value-0.05, length.out = 5), 2),

labels =

paste0(round(seq(min_value, max_value-0.05, length.out = 5), 2)*100, ’%’))

dev.off()

104

Code: Visualization Long Short Positions of LSTM Model

cat(’\f’)

rm(list = ls())

library(dplyr)

library(tidyverse)

library(lubridate)

library(grDevices)

df <- readxl::read_xlsx(’thesis_vis/ibm_lstm_strategy.xlsx’)

df <- df[-1,]

Visual here;

pdf_file <- ’thesis_vis/ibm_lstm_place_position.pdf’

cairo_pdf(bg = ’grey98’, pdf_file, width = 9.6, height = 5.8)

par(

omi = c(0.25, 0.5, 0.75, 0.6),

mai = c(0.25, 0.5, 0.05, 0.8),

family = ’Lato Light’,

las = 1,

mgp = c(1, 1, 0)

)

par(cex = 0.85, bg = ’white’)

myColor1 <- ’brown’

myColor2 <- ’blue’

myColor3 <- ’red’

myColor4 <- ’green’

min_value <- min(df$actual)

max_value <- max(df$actual)

plot(as.Date(df$Date), df$actual, type = ’n’, axes = FALSE, xlab = "", ylab = ’’,

col = rgb(255, 97, 0, 150, maxColorValue = 255), lwd = 1.5)

points(as.Date(df$Date), df$actual, lwd = 1, type = ’l’, col = myColor1)

points(as.Date(df$Date), df$actual, col = myColor1, pch = 19, cex = 0.5)

points(as.Date(df$Date), if_else(df$strategy == "buy", df$actual, NULL),

col = myColor4, pch = 17, cex = 1)

Legend,

legend(as.Date(’2020-06-20’), 100,

c(’Original price of IBM’, ’Long Position by LSTM-based Strategy’),

border = NA, pch = c(19, 17),

col = c(myColor1, myColor4), cex = 0.8, bty = ’n’)

Axis;

axis(1, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

at = seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’), length.out = 60),

cex.axis = 0.8,

lwd.ticks = 0.15, tck = 0.015, family = ’Lato Light’,

labels = format(seq(as.Date(’2019-02-01’),

as.Date(’2021-03-01’), length.out = 60), ’%b\n%Y’))

105

axis(2, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

lwd.ticks = 0.15, cex.axis = 0.8,

at = round(seq(min_value, max_value-5, length.out = 5), 0))

mtext;

mtext(’The original price of IBM and Long positions by LSTM-based Strategy’,

3, line = 1.6, adj = 0.05, cex = 1.09,

family = ’Lato Black’, outer = TRUE)

mtext(’The Strategy has been placed long only, short-sell is restricted’,

3, line = -0.0, adj = 0.06, cex = 0.85,

family = ’Lato Light’, outer = TRUE, font = 3)

dev.off()

106

Code: Visualization Long Short Positions of RNN Model

cat(’\f’)

rm(list = ls())

library(dplyr)

library(tidyverse)

library(lubridate)

library(grDevices)

df <- readxl::read_xlsx(’thesis_vis/ibm_rnn_strategy.xlsx’)

df <- df[-1,]

Visual here;

pdf_file <- ’thesis_vis/ibm_rnn_place_position.pdf’

cairo_pdf(bg = ’grey98’, pdf_file, width = 9.6, height = 5.8)

par(

omi = c(0.25, 0.5, 0.75, 0.6),

mai = c(0.25, 0.5, 0.05, 0.8),

family = ’Lato Light’,

las = 1,

mgp = c(1, 1, 0)

)

par(cex = 0.85, bg = ’white’)

myColor1 <- ’brown’

myColor2 <- ’blue’

myColor3 <- ’red’

myColor4 <- ’green’

min_value <- min(df$actual)

max_value <- max(df$actual)

plot(as.Date(df$Date), df$actual, type = ’n’,

axes = FALSE, xlab = "", ylab = ’’,

col = rgb(255, 97, 0, 150, maxColorValue = 255),

lwd = 1.5)

points(as.Date(df$Date), df$actual, lwd = 1, type = ’l’, col = myColor1)

points(as.Date(df$Date), df$actual, col = myColor1, pch = 19, cex = 0.5)

points(as.Date(df$Date), if_else(df$strategy == "buy", df$actual, NULL),

col = myColor4, pch = 17, cex = 1)

Legend,

legend(as.Date(’2020-06-20’), 100,

c(’Original price of IBM’, ’Long Position by RNN-based Strategy’),

border = NA, pch = c(19, 17), col = c(myColor1, myColor4),

cex = 0.8, bty = ’n’)

Axis;

axis(1, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

at = seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’), length.out = 60),

cex.axis = 0.8,

107

lwd.ticks = 0.15, tck = 0.015, family = ’Lato Light’,

labels = format(seq(as.Date(’2019-02-01’),

as.Date(’2021-03-01’), length.out = 60), ’%b\n%Y’))

axis(2, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

lwd.ticks = 0.15, cex.axis = 0.8,

at = round(seq(min_value, max_value-5, length.out = 5), 0))

mtext;

mtext(’The original price of IBM and Long positions by RNN-based Strategy’,

3, line = 1.6, adj = 0.05, cex = 1.09,

family = ’Lato Black’, outer = TRUE)

mtext(’The Strategy has been placed long only, short-sell is restricted’,

3, line = -0.0, adj = 0.06, cex = 0.85,

family = ’Lato Light’, outer = TRUE, font = 3)

dev.off()

108

Code: Visualization Profit or Loss of RNN Model

cat(’\f’)

rm(list = ls())

library(dplyr)

library(tidyverse)

library(lubridate)

library(grDevices)

df <- readxl::read_xlsx(’thesis_vis/ibm_rnn_strategy.xlsx’)

df <- df[-1,]

Visual here;

pdf_file <- ’thesis_vis/ibm_rnn_strategy.pdf’

cairo_pdf(bg = ’grey98’, pdf_file, width = 9.6, height = 5.8)

par(

omi = c(0.25, 0.5, 0.75, 0.6),

mai = c(0.25, 0.5, 0.05, 0.8),

family = ’Lato Light’,

las = 1,

mgp = c(1, 1, 0)

)

par(cex = 0.85, bg = ’white’)

myColor1 <- ’brown’

myColor2 <- ’blue’

myColor3 <- ’red’

myColor4 <- ’green’

min_value <- min(min(df$accumulated_buy_hold), min(df$acc_strategy_return))

max_value <- max(max(df$accumulated_buy_hold), max(df$acc_strategy_return))

plot(as.Date(df$Date), df$acc_buyhold_return, type = ’n’,

axes = FALSE, xlab = "", ylab = ’’,

col = rgb(255, 97, 0, 150, maxColorValue = 255), lwd = 1.5,

ylim = c(min_value+0.01, max_value-0.01))

points(as.Date(df$Date), df$acc_buyhold_return,

col = myColor1, lwd = 1, type = ’l’)

points(as.Date(df$Date), df$acc_buyhold_return,

col = myColor1, pch = 19, cex = 0.6)

points(as.Date(df$Date), df$acc_strategy_return,

col = myColor2, lwd = 1, type = ’l’)

points(as.Date(df$Date), df$acc_strategy_return,

col = myColor2, pch = 19, cex = 0.6)

Legend;

legend(as.Date(’2020-06-20’), -0.135,

c(’Accumulated return of buy and hold Strategy’,

’Accumulated return of RNN-based Strategy’),

border = NA, pch = 19, col = c(myColor1, myColor2),

cex = 0.8, bty = ’n’)

mtext;

mtext(’Accumulated Return of IBM stock with buy and hold and RNN-based Strategy’,

109

3, line = 1.6, adj = 0.05,

cex = 1.09, family = ’Lato Black’, outer = TRUE)

mtext(’Both Strategies were validated from 02/2019 to 03/2021’,

3, line = -0.0, adj = 0.06,

cex = 0.85, family = ’Lato Light’, outer = TRUE, font = 3)

Axis;

axis(1, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

at = seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’), length.out = 60),

cex.axis = 0.8,

lwd.ticks = 0.15, tck = 0.015, family = ’Lato Light’,

labels = format(seq(as.Date(’2019-02-01’),

as.Date(’2021-03-01’), length.out = 60), ’%b\n%Y’))

axis(2, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

lwd.ticks = 0.15, cex.axis = 0.8,

at = round(seq(min_value, max_value-0.05, length.out = 5), 2),

labels =

paste0(round(seq(min_value, max_value-0.05, length.out = 5), 2)*100, ’%’))

dev.off()

110

Code: Visualization Long Short Positions of SVM Model

cat(’\f’)

rm(list = ls())

library(dplyr)

library(tidyverse)

library(lubridate)

library(grDevices)

df <- readxl::read_xlsx(’thesis_vis/ibm_svc_strategy.xlsx’)

df <- df[-1,]

Visual here;

pdf_file <- ’thesis_vis/ibm_svm_place_position.pdf’

cairo_pdf(bg = ’grey98’, pdf_file, width = 9.6, height = 5.8)

par(

omi = c(0.25, 0.5, 0.75, 0.6),

mai = c(0.25, 0.5, 0.05, 0.8),

family = ’Lato Light’,

las = 1,

mgp = c(1, 1, 0)

)

par(cex = 0.85, bg = ’white’)

myColor1 <- ’brown’

myColor2 <- ’blue’

myColor3 <- ’red’

myColor4 <- ’green’

min_value <- min(df$actual)

max_value <- max(df$actual)

plot(as.Date(df$Date), df$actual, type = ’n’,

axes = FALSE, xlab = "", ylab = ’’,

col = rgb(255, 97, 0, 150, maxColorValue = 255),

lwd = 1.5)

points(as.Date(df$Date), df$actual, lwd = 1, type = ’l’,

col = myColor1)

points(as.Date(df$Date), df$actual, col = myColor1,

pch = 19, cex = 0.5)

points(as.Date(df$Date), if_else(df$strategy == "buy", df$actual, NULL),

col = myColor4, pch = 17, cex = 1)

Legend,

legend(as.Date(’2020-06-20’), 100,

c(’Original price of IBM’, ’Long Position by SVM-based Strategy’),

border = NA, pch = c(19, 17), col = c(myColor1, myColor4),

cex = 0.8, bty = ’n’)

Axis;

axis(1, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

at = seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’), length.out = 60),

cex.axis = 0.8,

111

lwd.ticks = 0.15, tck = 0.015, family = ’Lato Light’,

labels =

format(seq(as.Date(’2019-02-01’), as.Date(’2021-03-01’), length.out = 60), ’%b\n%Y’))

axis(2, col = rgb(105, 105, 105, maxColorValue = 255),

col.ticks = rgb(105, 105, 105, maxColorValue = 255),

lwd.ticks = 0.15, cex.axis = 0.8,

at = round(seq(min_value, max_value-5, length.out = 5), 0))

mtext;

mtext(’The original price of IBM and Long positions by SVM-based Strategy’,

3, line = 2.6, adj = 0.05, cex = 1.09,

family = ’Lato Black’, outer = TRUE)

mtext(’The Strategy has placed long only, short-sell is restricted’,

3, line = 1, adj = 0.06, cex = 0.85,

family = ’Lato Light’, outer = TRUE, font = 3)

dev.off()

112

REFERENCES

[1] Aurélien, G. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow. Sebastopol, Canada: O’Reilly Media.

[2] Babaei G, Giudici P, Raffinetti E. Safeaipackage: a python package for AI risk

measurement. SSRN; 2024

[3] Bao, W., Yue, J., and Rao, Y. (2017). A deep learning framework for financial time

series using stacked autoencoders and long short-term memory. PLOS ONE, 12(7),

e0180944.

[4] Chollet, F. (2018). Deep Learning with Python. Manning Publications.

[5] European Commission. Proposal for a regulation of the European parliament

and of the coun-cil laying down harmonized rules on artificial intelligence

(Artificial Intelligence Act) andamending certain (Union Legislative Acts).

Brussels: European Commission; 2021 April 21.

[6] Fischer, T., and Krauss, C. (2018). Deep learning with long short-term memory

networks for financial market predictions. European Journal of Operational

Research, 270(2), 654-669.

[7] Fischer, T., and Krauss, C. (2018). Deep learning with long short-term memory

networks for financial market predictions. European Journal of Operational

Research, 270(2), 654-669.

[8] Giudici P, Raffinetti E. SAFE artificial intelligence in finance. Finance Res Lett.

2023; 56:104088. doi: 10.1016/j.frl.2023.104088

[9] Giudici, P., Centurelli, M., and Turchetta, S. (2024). Artificial intelligence

risk measurement. Expert Systems with Applications, 235, Article 121220.

http://dx.doi.org/10.1016/j.eswa.2023.121220.

[10] Giudici, P., and Raffinetti, E. (2023). SAFE artificial intelligence

in finance. Finance Research Letters, 13, Article, 104088.

https://doi.org/10.1016/j.eswa.2020.114104

[11] Giudici, P., and Raffinetti, E. (2024). RGA: a unified approach of

predictive accuracy. Advances in Data Analysis and Applications,

http://dx.doi.org/10.1007/s11634-023-00574-2, (in press)

[12] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

[13] Guoqiang, Z., Patuwo, B.E., and Michael, Y.H. (1998). Citation: Forecasting with

artificial neural networks: the state of the art. International journal of forecasting,

14(1), 35-62.

[14] Heaton, J. B., Polson, N. G., and Witte, J. H. (2017). Deep learning for finance:

deep portfolios. Applied Stochastic Models in Business and Industry, 33(1), 3-12.

113

[15] Hiransha, M., Gopalakrishnan, E. A., Menon, V. K., and Soman, K. P. (2018) NSE

stock market prediction using deep-learning models. Procedia Computer Science,

132, 1351-1362.

[16] Hu, Y., Liu, X., and Zhang, L. (2020). Application of deep learning in financial

markets: A review. Journal of Finance and Data Science, 6(2) 107-127.

[17] Jonh, S.T., Peter, L.B., Robert, C.W., and Martin, A. (1996). Citation: Structural

Risk Minimization over Data-Dependent Hierarchies. Neural and Computer

Learning, 8556, 18-26.

[18] Julian, F., Chris, C. (1998). Citation: Time series forecasting with neural networks:

a comparative study using the air line data. Journal of the Royal Statistical Society:

Series C (Applied Statistics), 47(2), 231-250.

[19] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553),

436-444.

[20] Matthew, F.D., Igor, H., Paul, B. (2020). Machine Learning in Finance From

Theory to Practice. Cham, Switzerland: Springer Nature Switzerland AG.

[21] McKinney, W. (2010). Data Analysis with Python. O’Reilly Media.

[22] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ...

and Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance

Deep Learning Library. Advances in Neural Information Processing Systems, 32,

8026-8037.

[23] Paul, J.W (1988). Citation: Generalization of backpropagation with application to

a recurrent gas market model. Neural Networks, 1(4), 339-356.

[24] Raffinetti, E. (2023). A rank graduation accuracy measure to mitigate

artificial intellgence risks. Quality and Quantity, 57(2), 131–150.

http://dx.doi.org/10.1007/s11135-023-01613-y

[25] Raja, V., Maxence, H., Daniel, N. (2020). Algorithmic Trading and Quantitative

Strategies. Boca Raton, Florida, USA: CRC Press.

[26] Richardson, L. (2015). Python Web Scraping. Packt Publishing.

[27] Robert, K. (2021). Algorithmic Trading Methods: Applications using Advanced

Statistics, Optimization, and Machine Learning Techniques (2nd ed.). Oxford,

United Kingdom: Academic Press.

[28] Sebastien, D., Sourav, G. (2019). Learn Algorithmic Trading. Birmingham, United

Kingdom: Packt Publishing.

[29] Sepp, H., Jurgen, S. (1997). Citation: Long Short-Term Memory. Neural

Computation, 9(8), 1735-1780.

[30] Shalev, S.S., Ben, D.S. (2014). Understanding Machine Learning From Theory to

Algorithms. New York, USA: Cambridge University Press.

114

[31] Van Rossum, G., and Drake, F. L. (2009). Python 3 Reference Manual.

CreateSpace Independent Publishing Platform.

[32] Yahoo Finance API. (2024). Yahoo Finance API Documentation. Retrieved from

https://www.yahoofinanceapi.com/

[33] Yarovaya, L. (2019). Financial Markets and Investment Analysis. Wiley.

[34] Zaiyoung, T., Chrys, D.A, Paul, A.F. (1991). Citation: Time series forecasting

using neural networks vs box-jenkins methodology. Simulation, 57(5), 303-310.

[35] Zhang, G.P, Min, Q. (2005). Citation: Neural network forecasting for seasonal and

trend time series. European journal of operational research, 160(2), 501-514.

115

