
Università degli Studi di Pavia
Facoltà di Ingegneria

Dipartimento di Ingegneria Industriale e dell’Informazione
Corso di Laurea Magistrale in Computer Engineering

Fall Detection with Smartphones Using
Recurrent Neural Networks

Tesi di Laurea Magistrale di:
Nicola Blago

Relatore:
Prof. Marco Piastra

Correlatori:
Dott. Mirto Musci
Ing. Mario Betti

A∴A∴ 2016/2017

Abstract

This thesis investigates possible approaches of machine learning to automatic
fall detection, with a focus on deployment on smartphones. After introducing
the theoretical background for both fall detection and machine learning, a
summary of the available tools is presented, followed by the rationale behind
our research choices.

A detailed description of the experiments made is provided; all the steps
followed to achieve a trained neural network capable of detecting falls are
thoroughly illustrated, starting from the existing datasets to the creation
of a new one. The project also focuses on the development of an Android
application capable of using such trained network.

iii

(https://xkcd.com/1838/)

Contents

Introduction vi

1 Theory 1
1.1 Fall Detection . 1

1.1.1 Motivations . 1
1.1.2 Approaches . 2
1.1.3 State of the Art . 2

1.2 The SisFall Dataset . 3
1.2.1 Selection of Activities 3
1.2.2 Partecipants . 4
1.2.3 Experimental Set-Up 5
1.2.4 Fall Detection Algorithms 6
1.2.5 Results . 8

1.3 Machine Learning . 8
1.3.1 Neural Networks . 8
1.3.2 Recurrent Neural Networks 11

1.4 LSTM and composite models 12
1.4.1 The Problem of Long-Term Dependencies 12
1.4.2 LSTM Networks . 14

2 Practice 17
2.1 Android Devices . 17

2.1.1 Reading the Accelerometer signals 18
2.2 TensorFlow . 19
2.3 TensorFlow for Android . 22

2.3.1 TensorFlow Mobile . 22
2.3.2 TensorFlow Lite . 24

3 Experiments 25
3.1 Objective . 25
3.2 Fall Detection with Statistical Indicators 26

iv

CONTENTS v

3.3 Machine Learning on SisFall 29
3.4 Beyond SisFall . 31

3.4.1 Fine-grained Temporal Labeling of SisFall 31
3.4.2 Acquiring an Integrated, Enhanced Dataset 33

3.5 Body Network of Android Devices 33
3.6 TensorFlow on Android . 36

4 Results and Future Developments 41
4.1 Data Collection . 41
4.2 Training . 43
4.3 Testing on Mobile Devices . 44

5 Conclusions 47

Bibliography 49

Introduction

Nowadays machine learning is one of the most promising and discussed top-
ics, both by the scientific community and by the general public. Machine
learning techniques are being developed to perform an increasing number of
tasks in the more disparate fields, from playing board games to recognizing
objects in a real-time video.
These impressing improvements have been possible in recent years due to the
interest in these techniques performing often with super-human accuracy.

The increasing popularity of machine learning will bring these techniques
in many aspects of daily life.

In particular, unintentional falls are part of our daily life, especially inside
the elderly population or any person with frailties. Falls are a major health
problem, expensive, and statistically unavoidable.
On the other hand, automatic fall detection is still an open problem, since
machines cannot easily recognize a fall.

Over the past years, several falls monitoring systems have been proposed
in the literature. Ambient-based sensors, such as cameras, are among the
possible solutions. Other proposed approaches are based on wearable de-
vices, usually using a triaxial accelerometer.

Android devices, covering about 88% of the smartphone market, all pos-
sess at least one accelerometer. This ubiquitous distribution makes it an
ideal target for the development of a fall detection application.

The aim of the project described in this thesis is to study possible ap-
proaches of machine learning to automatic fall detection, with the hope to
get improved efficiency, accuracy and economic benefit.
Specifically, we are investigating a special kind of neural networks, the “Long
Short-Term Memory” (LSTM), specialized in processing signals that vary

vi

INTRODUCTION vii

over time.

The ultimate goal of the project is to:

• Provide a new dataset of smartphone-acquired accelerometer signals
representing falls and activities of daily living.

• Use this dataset to train a neural network.

• Deploy the trained network on a smartphone, to perform real-time fall
detection.

Organization

The thesis is structured as follows:

• In Chapter 1 we introduce the background theory regarding the au-
tomatic fall detection techniques and the state of the art, specifically
the SisFall dataset. We also introduce machine learning, focusing in
particular on recurrent neural networks and LSTM.

• In Chapter 2 a summary and evaluation of the tools explored is pre-
sented, as well as the reasons that lead us to our choices in terms of
smartphone operating systems and software for machine learning.

• In Chapter 3 we present the experiments we performed and the tran-
sition from the SisFall dataset to a newer one and the architecture we
chose to use.

• In Chapter 4 we present the results obtained and an outline of the
future steps.

• In Chapter 5 we will draw our conclusions.

Chapter 1

Theory

1.1 Fall Detection

1.1.1 Motivations

Unintentional falls are the leading cause of fatal injury and the most common
cause of nonfatal trauma-related hospital admissions among older adults.
One in four people aged over 65 years old falls every year. Falls result in more
than 2.8 million injuries treated in emergency departments annually, includ-
ing over 800,000 hospitalizations and more than 27,000 deaths. In 2014, the
total cost of fall injuries was $31 billion. The financial toll is expected to
increase as the population ages and may reach $67.7 billion by 2020.1

Elderly people are not the only group that is heavily affected by uninten-
tional falls: every person with some sort of fragility (for example: any kind
of mild disability or even post-operative patients) is part of similar statistics.
Worse yet, many of these people often live alone, so they may not receive
immediate assistance if an accident occurs.

Sadly, falls are statistically inevitable, even with prevention and risk re-
duction strategies. A good approach is then the remote home-care: it aims
at reducing hospitalization as much as possible (and to improve the quality
of life doing so). Remote home-care, however, requires constant monitoring,
since a fall is not predictable, and a fast response time is essential.
Given these premises, our approach will be to study the technical aspects of
using intelligent and interconnected devices for automatic falls monitoring.

1https://www.ncoa.org/news/resources-for-reporters/get-the-facts/

falls-prevention-facts/

1

CHAPTER 1. THEORY 2

1.1.2 Approaches

A human being can easily recognize a fall when the falling subject is in sight,
but for a machine it might be difficult, because a fall is not a direct biometric
reading (like for example an heartbeat).
Automatic fall detection techniques are usually divided into two main cate-
gories: wearable device-based and ambient-based. Ambient-based sensors are
mainly based on video cameras but these techniques are intrusive in terms
of privacy and do not solve the problem for independent adults, who are not
confined to closed spaces. Besides, even with deep learning methods (Feng
et al. (2014)) that of automatic fall detection might still be a difficult prob-
lem to address.
Wearable devices instead offer portability as they can be used regardless of
the user location, as long as a network connection can be guaranteed. The
preferred sensor is almost always the triaxial accelerometer due to its low
cost, small size, and since it is built-in in almost all smartphones. Smart-
phones are interesting candidates as wearable sensors since they include a
robust hardware, a powerful processor, they are economically affordable, and
the whole fall detection system could be implemented in a single app.
When used for monitoring purposes, however, a smartphone has relevant
limitations, like cost and battery durability. The ideal solution might then
be then a “body network” composed of various intelligent sensors (sensors
capable of on-chip computation).

1.1.3 State of the Art

Automatic fall detection from wearable sensor data is still an open problem,
and various studies have approached it. The common procedure of existing
studies is to record the raw acceleration sensor reading, filter them somehow
and then apply a feature extraction method which classifies activities as falls
or activities of daily living (ADL).

For our purposes, we were looking for datasets in literature meeting some
basic requirements: all activities are well documented, the raw data is freely
available, the dataset contains both falls and ADL, and it is reported in a
peer-reviewed paper.
Five of such datasets were then considered:

CHAPTER 1. THEORY 3

• DLR (Frank et al. (2010)).
Sixteen subjects (23 to 50 years old). They recorded six types of ADL,
and the authors did not specify the conditions of the falls (they belong
to a single group). The files are too short for some types of analysis.

• tFall (Medrano et al. (2014)).
Ten participants between 20 and 42 years old. They recorded eight
types of falls (503 total recordings with two smartphones), and one week
of continuous ADL recordings with all participants carrying smart-
phones in the pockets and a handbag. The ADL trials were not iden-
tified by activity.

• Project gravity (Vilarinho et al. (2015)).
Three participants (ages 22, 26, and 32) performed 12 types of falls and
seven types of ADL with a smartphone in the pocket.

• MobiFall (Vavoulas et al. (2016)).
Twenty-four volunteers (22 to 42 years old) performed nine types of
ADL and four types of falls using a Samsung Galaxy smartphone. Nine
subjects performed falls and ADL, while 15 performed only falls (three
trials each).

• SisFall (Sucerquia et al. (2017)).
Twenty-three young adults performing 19 ADL and 15 fall types, four-
teen healthy and independent elders (over 62 years old) performing 15
ADL types, one 60 years old participants that performed all ADL and
falls. All the data is acquired with a self-developed device composed of
two types of accelerometers and one gyroscope.

For our purposes, the SisFall dataset was the most interesting, as it in-
cludes elderly people, and with a great variety of activities and number of
subjects. In addition, all the other listed datasets acquired data using smart-
phones, while SisFall adopts a special, purpose-built device fixed on body as
a belt buckle (see Figure 1.1).

1.2 The SisFall Dataset

1.2.1 Selection of Activities

To determine which falls were to be performed, in addition to those commonly
tested in the literature, the SisFall team took a survey among elderly people.
As reported by Sucerquia et al. (2017), the survey consisted of three main
questions: For each fall incident:

CHAPTER 1. THEORY 4

• Which activity were you performing when the fall happened?

• What produced the fall? A sliding, a faint, a trip, other?

• In which orientation did the fall happen? What part of the body re-
ceived the impact?

ADL were selected based on common activities, activities that are similar
(in acceleration waveform) to falls, and activities with high acceleration that
can generate false positives.
The two following tables (Falls in Table 1.1 and ADL in Table 1.2) list all
the activities included in the dataset.

Code Activity

F01 Fall forward while walking caused by a slip
F02 Fall backward while walking caused by a slip
F03 Lateral fall while walking caused by a slip
F04 Fall forward while walking caused by a trip
F05 Fall forward while jogging caused by a trip
F06 Vertical fall while walking caused by fainting
F07 Fall while walking, with use of hands in a table to dampen fall,

caused by fainting
F08 Fall forward when trying to get up
F09 Lateral fall when trying to get up
F10 Fall forward when trying to sit down
F11 Fall backward when trying to sit down
F12 Lateral fall when trying to sit down
F13 Fall forward while sitting, caused by fainting or falling asleep
F14 Fall backward while sitting, caused by fainting or falling asleep
F15 Lateral fall while sitting, caused by fainting or falling asleep

Table 1.1: Types of falls selected for SisFall.

1.2.2 Partecipants

The thirty-eight volunteers were divided into two groups: elderly people and
young adults. Elderly people group was formed by fifteen participants (eight
males and seven females), and the young adults group was formed by twenty-
three participants (eleven males and twelve females). The elderly people were
all healthy and independent, and none of them presented gait problems.

CHAPTER 1. THEORY 5

Code Activity

D01 Walking slowly
D02 Walking quickly
D03 Jogging slowly
D04 Jogging quickly
D05 Walking upstairs and downstairs slowly
D06 Walking upstairs and downstairs quickly
D07 Slowly sit in a half height chair, wait a moment, and up slowly
D08 Quickly sit in a half height chair, wait a moment, and up quickly
D09 Slowly sit in a low height chair, wait a moment, and up slowly
D10 Quickly sit in a low height chair, wait a moment, and up quickly
D11 Sitting a moment, trying to get up, and collapse into a chair
D12 Sitting a moment, lying slowly, wait a moment, and sit again
D13 Sitting a moment, lying quickly, wait a moment, and sit again
D14 Being on one’s back change to lateral position, wait a moment, and

change to one’s back
D15 Standing, slowly bending at knees, and getting up
D16 Standing, slowly bending without bending knees, and getting up
D17 Standing, get into a car, remain seated and get out of the car
D18 Stumble while walking
D19 Gently jump without falling (trying to reach a high object)

Table 1.2: Types of ADL selected for SisFall.

Young adults performed ADL and falls, while elderly people did not perform
falls and activities D06, D13, D18, and D19 from Table 1.2. Additionally,
some elderly people did not perform some activities due to personal impair-
ments or medical recommendation. The participant of 60 years old identified
by code SE06, who is an expert in Judo simulated both falls and ADL.

1.2.3 Experimental Set-Up

The dataset was recorded with a self-developed embedded device composed
of two accelerometers and one gyroscope. The SisFall team only used the
ADXL345 accelerometer for their fall detection algorithm, but the data
recorded with the other two sensors were also made publicly available.
The device was fixed to the waist of the participants, with the positive z-axis
in the forward direction, the positive y-axis in the gravity direction, and the
positive x-axis pointing to the right side of the participant (Figure 1.1).
All tests were performed with the same frequency sample of 200 Hz.

CHAPTER 1. THEORY 6

Figure 1.1: Device used by SisFall for acquisition.

1.2.4 Fall Detection Algorithms

The SisFall team also developed some algorithms for fall detection, following
the common pipeline to process the data: preprocessing, feature extraction,
classification, and validation.

• Preprocessing.
The preprocessing stage consisted of a 4th order IIR Butterworth low-
pass filter, used to reduce high frequency noise.

• Feature extraction.
Fourteen features were defined (identified with codes C1 through C14)
that presented a good overall performance in separating ADL from falls.
Those features were divided in five groups: amplitude, orientation an-
gle, statistical moments, critical phase time, and area under the curve.
Each feature is calculated over a sliding window of signal samples.
A sliding window of a signal (See Figure 1.2) is a set of values from the
signal, and it is defined by two parameters:

– N , the window length, that determines how many samples are
present inside the window.

– s, the stride, that indicates the distance between the beginning of
a window and the beginning of the next one.

• Classification.
The classification algorithm used to discriminate ADL from falls is a

CHAPTER 1. THEORY 7

Figure 1.2: Example of a sliding window with N = 5 and s = 2.

simple threshold-based classifier: if the value of the feature is greater
than a given threshold, the sequence is labeled as a fall; otherwise it is
labeled as a ADL. The threshold values are chosen in order to maximize
either accuracy or sensitivity.
Sensitivity (SE), specificity (SP) and accuracy (AC) are defined as
follows:

SE =
TP

TP + FN
SP =

TN

TN + FP
AC =

SE + SP

2
(1.1)

Where TP , TN , FP and FN are, respectively: true positive, true
negatives, false positives and false negatives.

• Validation.
The robustness of the classification stage was analyzed with a 10-fold
cross-validation. The groups were chosen guaranteeing the same pro-
portion of falls and ADL, and each group was used in one fold as
validation data.

CHAPTER 1. THEORY 8

1.2.5 Results

Notation
A single sample of acceleration at time t is defined as

a[t] := [ax[t], ay[t], az[t]] (1.2)

where ax[t], ay[t] and az[t] are the individual acceleration values in the three
axis.

The starting time of the k-th sliding window of signal is:

t
(k)
0 := k · s (1.3)

where s is the stride. The k-th sliding window containing N samples is
denoted as:

a(k)x := [ax[t
(k)
0], . . . , ax[t

(k)
0 +N − 1]] (1.4)

Among the 14 features, the one that performed best overall was the so-
called C8, that resulted in both an accuracy and a sensitivity of about 90%.
C8, the “Standard deviation magnitude on horizontal plane”, is defined as:

C
(k)
8 :=

√
σ2(a

(k)
x) + σ2(a

(k)
z) (1.5)

This feature got good results, because (as seen in Figure 1.1) the SisFall
device was fixed. For our purposes, where a smartphone cannot be assumed
to be fixed, the C9 feature is a better candidate.
C9 is described as “Standard deviation magnitude”, and is defined by the
following equation:

C
(k)
9 :=

√
σ2(a

(k)
x) + σ2(a

(k)
y) + σ2(a

(k)
z) (1.6)

Where σ2(a
(k)
x) is the variance of x over the k-th window of the signal.

1.3 Machine Learning

1.3.1 Neural Networks

Artificial neural networks are computing systems that synthesize pattern-
detecting procedures by abstracting from data. For example, in image recog-

CHAPTER 1. THEORY 9

nition, such networks can learn to identify images that contain cats by ana-
lyzing example images that have been manually labeled as “cat” or “no cat”
and using the analytic results to identify cats in other images.
“Learning” here means that inputs and expected outputs are considered in
pairs, and the parameters of the network are progressively adjusted to re-
duce the difference between actual and expected output according to some
predefined loss function.

Machine Learning can be seen as composed of three parts (adapted from
Domingos (2012)):

• Representation.
How to effectively represent a target function.

• Evaluation.
How one model is preferred over another: an evaluation function is
needed to score different representations.

• Optimization.
How to search the space containing the represented functions: a method
is needed to find the highest-scoring one.

Representation

As proved by Cybenko (1989) and Csáji (2001), artificial neural networks
are universal approximator of functions: a network of depth at least 2 can
approximate any real function, to an arbitrary degree.

Considering a target function

y = f ∗(x), x ∈ Rd (1.7)

can be approximated by a feed-forward neural network as

ỹ = w · h + b, w ∈ Rh, b ∈ R (1.8)

where h, called “hidden layer” is

h := g(Wx + b), W ∈ Rh×d, b ∈ Rh (1.9)

and g(·) is a non-linear function. Popular choices are:

g(x) = σ(x) =
1

1 + e−x
(1.10)

g(x) = tanh(x) (1.11)

g(x) = ReLU(x) = max(0, x) (1.12)

CHAPTER 1. THEORY 10

A “deep” neural network is an artificial neural network with multiple
hidden layers (Figure 1.3b). Deeper networks need more parameters. For
example, combining Equations 1.8 and 1.9 with a network with three hidden
layers, we get

ỹ = w · g(W (1)g(W (2)g(W (3)x + b(3)) + b(2)) + b(1)) + b (1.13)

Deep neural network are provably better than shallow ones. Quoting Good-
fellow et al. (2016), “[. . .] researchers were now able to train deeper neural
networks than had been possible before, and to focus attention on the theo-
retical importance of depth. At this time, deep neural networks outperformed
competing AI systems based on other machine learning technologies as well
as hand-designed functionality”.

(a) (b)

Figure 1.3: Representation of two Artificial Neural Networks, with (a) one
and (b) three hidden layers.

Evaluation

How can we evaluate how well an artificial neural network approximates a
function? That is, how good are the parameters of the network?
Formally, given a target function (Equation 1.7) and a dataset of samples S

S := (y(i),x(i)), y(i) = f ∗(x(i)) (1.14)

we want to find the parameters w, b, W and b in Equations 1.8 and 1.9 such
that the loss L(S)

L(S) :=
1

|S|
∑

(y(i),x(i))∈S

∣∣ỹ(i) − y(i)∣∣2 (1.15)

CHAPTER 1. THEORY 11

is minimized.
Smaller values of L(S) lead to better approximation, because the represented
function is closer to the target function.

Optimization

How can a represented function be learnt from data? How to automatically
choose the parameters that compose the best model?
In general, minimizing the loss function cannot be done directly. That is:

∂

∂ϑ
L(S) = 0 (1.16)

(where ϑ is any of the four parameters) cannot be solved analytically and
has to be solved numerically.
For example, the Gradient Descent algorithm and its variations, widely used
in machine learning, can find by iteration the local optimum.

Algorithm: Stochastic Gradient Descent

1. Assign initial values to the four parameters w, b, W and b.

2. Update the four parameters (with η � 1, η → 0 as iteration progress):

∆w = −η ∂
∂w
L(ỹ(i) − y(i)) ∆b = −η ∂

∂b
L(ỹ(i) − y(i))

∆W = −η ∂
∂W

L(ỹ(i) − y(i)) ∆b = −η ∂
∂b
L(ỹ(i) − y(i))

Where L(ỹ(i) − y(i)) := (ỹ(i) − y(i))2 is the pointwise loss for a specific
sample in the dataset.

3. Unless complete, return to step 2.

In summary, given a dataset of examples, an artificial neural network is
capable of learning the parameters that best approximate the representation
of any function.

1.3.2 Recurrent Neural Networks

Recurrent neural networks (RNN) are networks with loops in them, allowing
information to persist. The basic idea is to make the output depend on the

CHAPTER 1. THEORY 12

past history. They are mainly used to treat data in form of sequences and
lists, especially signals that very over time.
The expression of a recurrent neural network is:

ỹ(t) = w · h(t) + b (1.17)

Where h(t), the hidden layer at time t, is

h(t) = g(Wx(t) + Uh(t−1) + b) (1.18)

In figure 1.4 the single mathematical expressions can be seen.

Figure 1.4: Mathematical form of an unrolled RNN.

Recurrent neural networks are more powerful than feed-forward neural
networks: they can approximate any Turing machine (Siegelmann and Son-
tag (1995)). They are altough much harder to train, but using temporal
unrolling, gradient descent methods can be applied.

1.4 LSTM and composite models

1.4.1 The Problem of Long-Term Dependencies

When the gap between some relevant information and the place where it is
needed is small, recurrent neural networks can learn very well to use that

CHAPTER 1. THEORY 13

past information.
To train a recurrent neural network, temporal unrolling is used (Figure 1.5).
But temporal unrolling is limited, so also the time depth is. This means
that when the gap between the relevant information and the point where
it is needed is very large (Figure 1.6), the network cannot access that past
information. In theory, recurrent neural networks are capable of handling
these “long-term dependencies”, but in practice they do not seem to be able
to learn them.2

Figure 1.5: An unrolled RNN.

Figure 1.6: Long-term dependencies in a RNN.

The problem was explored in depth by Bengio et al. (1994), who found
some fundamental reasons why it might be difficult: either the system will
be very sensitive to noise, or the derivatives of the loss function will converge
exponentially to zero (called the “vanishing gradient” problem).

2All the images in this chapter are taken from http://colah.github.io/posts/

2015-08-Understanding-LSTMs/

CHAPTER 1. THEORY 14

1.4.2 LSTM Networks

Long Short-Term Memory networks (“LSTM”) are a special kind of RNN, ca-
pable of learning long-term dependencies. They were introduced by Hochre-
iter and Schmidhuber (1997) and improved by Gers et al. (1999). They work
very well on a large variety of problems, and are now widely used.
LSTM also have the chain-like structure of the RNN (Figure 1.7), but the
repeating module has a different structure. Instead of having a single func-
tion g(·), they have four, interacting in different ways (Figure 1.8).

Figure 1.7: The repeating module in a standard RNN.

Figure 1.8: The repeating module in a LSTM.

From a step to the next one, the LSTM passes both the output and the
state. The cell state runs straight down the entire chain, with some linear
interactions: the LSTM has the ability to remove or add information to the
cell state, by structures called gates. Gates optionally let information going

CHAPTER 1. THEORY 15

through.
An LSTM has three of these gates: an input gate, an output gate and a forget
gate.

The first step the LSTM performs is to decide what information is going
to be discarded from the cell state. This decision is made by the forget gate
(Figure 1.9).

Figure 1.9: The forget gate of a LSTM.

The next step is to decide what new information is going to be stored in
the cell state. The input gate (Figure 1.10) decides which values are going
to be updated, and a tanh layer creates a new vector of values that could be
added to the state, C̃t. The old cell state Ct−1 is now going to be updated
into the new cell state Ct (Figure 1.11): it is first multiplied by ft, the output
of the forget gate, and then added to it ∗ C̃t, the new (scaled) values.

Figure 1.10: The input gate of a LSTM.

The last step is to produce the output (Figure 1.12). It is calculated by
multiplying the output of the output gate and the current cell state.

CHAPTER 1. THEORY 16

Figure 1.11: The update of the cell state of a LSTM.

Figure 1.12: The output gate of a LSTM.

Chapter 2

Practice

2.1 Android Devices

Since late 2016, mobile operating systems that can be found on smartphones
include Google’s dominant Android and Apple’s iOS as the only two big
competitors, with both combined at about 99% market share. According to
these statistics1, devices running the Android operating system cover about
88% of the market. Such extensive distribution makes Android an ideal tar-
get for the development of a fall detection application.

In general, a fall detection application must:

• Read the signals from the built-in accelerometer.

• Interpret these signals:

– Elaborate the signals according to an algorithm.

– Based on the algorithm output, classify the read signals (and thus
the event that just took place) as ADL or as fall.

Almost every smartphone running Android possess (at least) one built-in
accelerometer. Reading the acceleration signals from it is widely supported
by the Android API, albeit with its limitations (described later on in this
chapter).

The interpretation of accelerometer signals, however, is rather difficult:

• Input signals are time-variant (unlike a still image)

1https://www.gartner.com/newsroom/id/3516317

17

CHAPTER 2. PRACTICE 18

• Information is limited (just three scalar values at each time instant)

• It is the history of the signals (the waveform) that describes the event,
not the instant value

Besides, false negatives are to be avoided, but even false positives cannot be
too high in measure.
In fact, automatic fall detection from sensor data is still an open prob-
lem. Some approaches have been developed; for example, the SisFall team
(Sucerquia et al. (2017)) developed a threshold-based classifier, while our
work will employ machine learning techniques (described in the next chap-
ter).

2.1.1 Reading the Accelerometer signals

In Android, each reading of the accelerometer values comes in the form of an
event.
Such event holds the following informations:

• Sensor type.

• Timestamp.

• Accuracy.

• Sensor reading values.

In our case the sensor type is always an accelerometer. Other sensor types
might be available on the device, such as a gyroscope.
The timestamp value is expressed in nanoseconds, and represents the time
passed since the activation of the sensor.
The accuracy is a parameter that describes the sampling rate. On Android
the accelerometer does not have a fixed sampling rate, and the accuracy acts
like a “suggestion”, but ultimately the sampling rate is out of our control.
This problem will be addressed in the following chapter.
The sensor reading values are stored in an array named values. Each value
is a float representing the individual acceleration values in the three axis,
expressed in m/s2.

In the light of what just described, every event holds the same informa-
tions defined in Equation 1.2, in Chapter 1:

a[t] := [ax[t], ay[t], az[t]] (1.2)

CHAPTER 2. PRACTICE 19

To receive notification of sensor reading events from Android, an appli-
cation must:

• Define a class that implements SensorEventListener.

• Override in such class the method onSensorChanged.

• At run time, register such class as a listener for the accelerometer.

A sample code follows:

public class Activity [...] implements SensorEventListener {

[...]

public void onSensorChanged(SensorEvent event) {

timestamp = event.timestamp;

x = event.values[0];

y = event.values[1];

z = event.values[2];

}

[...]

SensorManager mSensorManager = (SensorManager)

↪→ getSystemService(Context.SENSOR_SERVICE);

Sensor mAccelerometer = mSensorManager.getDefaultSensor(

↪→ Sensor.TYPE_ACCELEROMETER);

mSensorManager.registerListener(this, mAccelerometer,

↪→ SensorManager.SENSOR_DELAY_FASTEST);

[...]

}

event.accuracy values are not read here, as we chose to use the fastest
available sampling rate.

2.2 TensorFlow

Developed by researchers at Google, TensorFlow (Abadi et al. (2015)) is an
open source software framework for the purposes of machine learning: it is
intended for tensorial numerical computation and is optimized for building
and training neural networks.
It reached version 1.0 in February 20172, and is now used by a wide range
of different companies. It has become one of the main framework for ma-
chine learning, thanks to the support of Google and the richness of functions
implemented.

2https://research.googleblog.com/2017/02/announcing-tensorflow-10.html

CHAPTER 2. PRACTICE 20

TensorFlow performs three primary functions:

• Tensorial Computation.
The central data structure in TensorFlow is the tensor, that is a set of
primitive values shaped into a multidimensional array.
A computational graph is a series of TensorFlow operations arranged
into a graph of nodes. Each node has zero or more inputs and zero or
more outputs, and represents a mathematical operation. Values that
flow along normal edges in the graph (from outputs to inputs) represent
the tensors (Figure 2.1).
TensorFlow both builds and runs the computational graph. Building
a graph means defining all its nodes and edges, while running means
performing the actual computations.

Figure 2.1: An example of a TensorFlow computational graph. The repre-
sented graph roughly corresponds to equation 1.9 in Chapter 1.

• Automatic Gradient Computation.
Most numerical optimization algorithms require computing the gradi-
ent of a loss function with respect to a set of inputs (e.g. the Stochastic
Gradient Descent seen in Chapter 1). Because this is such a com-
mon need in machine learning, TensorFlow has a built-in support for
automatic gradient computation. Gradients are computed, like other
tensors, by extending the TensorFlow graph (Figure 2.2).

• Ability to run with hardware acceleration.
Learning algorithms can be computationally intensive to execute. For

CHAPTER 2. PRACTICE 21

Figure 2.2: Gradients computed for graph in Figure 2.1.

this reason, TensorFlow provides an interface to leverage hardware ac-
celeration (e.g. GPUs), if available on the device, to improve perfor-
mance.

A machine learning technique will typically employ TensorFlow to build
the graph describing the network architecture, and then running this graph
for optimizing the parameters (i.e. training the network) thanks to the au-
tomatic gradient computation.
Once the parameters are learned, running the graph with a certain input
will be computationally easy, and the output will represent the output of the
network.

TensorFlow can run on a wide variety of different hardware platforms. We can
here identify two of these platforms, and highlight what are the TensorFlow
capabilities in each of them:

• Workstation.
When running on a workstation, TensorFlow can perform all its func-
tions. Specifically, it can both train the network and make inferences
with it (i.e. give an input to the trained network and output a predic-
tion). While training is a computationally intensive process, inference
is not.

• Smartphone.
When running on a smartphone, where the computing power is limited,

CHAPTER 2. PRACTICE 22

TensorFlow can only make inferences. At the moment, TensorFlow has
two versions that can run on a smartphone: TensorFlow Mobile and
TensorFlow Lite.

2.3 TensorFlow for Android

2.3.1 TensorFlow Mobile

Since May 17th, 2017 Google started the the “TensorFlow Mobile” project3,
aimed at an easy way to incorporate TensorFlow on mobile devices.

The “core” of TensorFlow Mobile is the TensorFlow Inference Interface,
the module capable of making inferences. This module is available as a JCen-
ter package, guaranteeing a stable and constantly updated release.

The Inference Interface needs a trained neural network as input. This
trained network is also called a “frozen model” in the documentation, and
contains all the relevant information (the graph, defining the structure of
the network, and every tensor, containing network parameters). Irrelevant
informations, that are not needed by the Inference Interface, are discarded
in an automatic process called “pruning”, to reduce the file size of the model.

The frozen model can then be used as asset inside the application.
To access this model and subsequently perform inference, the application
must know the following:

• Path of the frozen model

• Name of the input and output tensors

• Shape of above tensors

In this snippet of code the necessary informations are highlighted in red:

import android.content.Context;

import android.content.res.AssetManager;

import org.tensorflow.contrib.android.

↪→ TensorFlowInferenceInterface;

class TF_classifier {

3https://www.tensorflow.org/mobile/mobile_intro

CHAPTER 2. PRACTICE 23

private static final String MODEL_FILE =

↪→ "file:///android asset/frozen model.pb";

private static final String INPUT_NODE = "Input";

private static final String[] OUTPUT_NODES = {"Output"};

private static final String OUTPUT_NODE = "Output";

private static final long[] INPUT_SIZE = 1, 128, 3;

private static final int OUTPUT_SIZE = 2;

private TensorFlowInferenceInterface inferenceInterface;

TF_classifier(final Context context) {

AssetManager assetManager = context.getAssets();

inferenceInterface = new TensorFlowInferenceInterface(

↪→ assetManager, MODEL_FILE);

}

}

Note that this class, TF classifier, creates an instance of
TensorFlowInferenceInterface. This interface has three main methods:

• feed, used to give the input to the trained network.

• run, to actually run the computational graph.

• fetch, to obtain the values of the output nodes.

A simple method implementing this, predictProbabilities, is shown
here:

float[] predictProbabilities(float[] inputData) {

float[] results = new float[OUTPUT_SIZE];

inferenceInterface.feed(INPUT_NODE, inputData, INPUT_SIZE);

inferenceInterface.run(OUTPUT_NODES);

inferenceInterface.fetch(OUTPUT_NODE, results);

return result;

}

A screenshot from a running version of TensorFlow Mobile is shown in
Figure 2.3.

CHAPTER 2. PRACTICE 24

Figure 2.3: TensorFlow Mobile running on Android, inside a fall detection
app. The output of the network is in form of complementary probabilities.
The app and its functions will be described in Chapter 3.

2.3.2 TensorFlow Lite

Currently (starting from November 14th, 2017) Google is developing “Ten-
sorFlow Lite”, an evolution of TensorFlow Mobile4.
TensorFlow Lite will provide better performance and a smaller binary size
on mobile platforms as well as the ability to leverage hardware acceleration
if available on these platforms.
In addition, TensorFlow Lite has fewer dependencies so it can be built and
hosted on simpler, more constrained device scenarios.

4https://www.tensorflow.org/mobile/tflite/

Chapter 3

Experiments

3.1 Objective

The objective of the following experiments is to develop an automatic fall
detection technique (see Chapter 1), that will be implemented in an applica-
tion for smartphones mainly aimed towards people with frailties.
This project is done in the scope of a collaboration between the University
of Pavia and KeyPeople, srl. The role of the University of Pavia is to pro-
vide fall detection techniques, while KeyPeople will be in charge of the user
experience and the distribution of the app.

We chose the Android operating system for ease of development (as seen
in Chapter 2).
The app should be active 24/7, and it must perform fall detection and alert
generation in soft real-time (i.e. within 1-2 seconds).
When active and carried by the user, the typical workflow of the app (Figure
3.1) is the following:

1. Detection of a (possible) fall

2. Generation of a local alert (e.g. an acoustic signal)

3. Wait for a possible manual reset (in the case of a false positive)

4. Generation of a remote alert (an automatic phone call, or the start
of a safety procedure where a remote operator will take care of the
situation. Other options are possible: for example, the activation of
the smartphone microphones or camera)

25

CHAPTER 3. EXPERIMENTS 26

Figure 3.1: The typical workflow of the app (courtesy of KeyPeople, srl).

3.2 Fall Detection with Statistical Indicators

The SisFall dataset (Sucerquia et al. (2017)) is a viable candidate for devel-
oping and validating automatic fall detection techniques since it contains a
great number of different activities, performed by different subjects of various
ages, with accelerometers and gyroscopes signals recorded at a high frequency
(200 Hz).

More precisely, as already discussed in Chapter 1, we can characterize the
dataset as follows:

• It contains 19 Activities of Daily Living (ADL) and 15 falls, performed
by 23 young adults and 14 elders.

• Each subject, after being instructed on how to perform a specific ac-
tivity, repeatedly performed such activity from 1 to 5 times.

• Signals recorded for each of these repetitions were stored in a specific
file.

• Each file (hence each activity) was labeled with the type of activity
performed (i.e. the “code” in Tables 1.1 and 1.2 in Chapter 1)

CHAPTER 3. EXPERIMENTS 27

As it can be seen in Figure 3.2, SisFall activities are in fact composite:
for example a single activity may contain walking, stumbling, falling and
immobility in a sequence.

Figure 3.2: Example of a composite SisFall activity: the fall occurs after
stumbling while walking. This screenshot is taken from the labeler program
described later on.

In the original SisFall paper, the authors proposed a set of statistical in-
dicators (also called “features”) to classify each recorded sequence of signals
as being either ADL or fall. In particular, as explained in Chapter 1, each
of these features acts on a sliding window of signals and produces a scalar
value that is compared with a predefined threshold.
As seen in Chapter 1, the best results were obtained using feature C8. How-
ever, such feature relies on the assumption of a fixed orientation of the device
hence of the accelerometers.

For this reason, we focused on feature C9, which does not rely on the
fixed orientation assumption.

C
(k)
9 :=

√
σ2(a

(k)
x) + σ2(a

(k)
y) + σ2(a

(k)
z) (1.6)

We implemented a python procedure for computing the C9 feature, and we
tested it against the entire SisFall dataset, replicating substantially the same
results (i.e. 92% accuracy) reported in the original paper. Also in agreement
with the original paper, we observed that feature C9 is slightly less accurate
than feature C8.

In a subsequent step, we decided to test feature C9 with an app for An-
droid smartphones. In the application developed (see Figure 3.3):

1. Accelerometer signals are obtained in real-time from the built-in sensors
of the smartphone (as seen in Chapter 2).

CHAPTER 3. EXPERIMENTS 28

2. Signals are cached in a sliding window (N = 128 and s = 1, see Chapter
1).

3. Feature C9 is computed for each sliding window, hence at each time
instant with a delay of 128 ticks.

4. The value of feature C9 is compared with a predefined threshold and
an event (i.e. an acoustic signal) is generated whenever such value is
above threshold.

In this application we used the threshold value (187.14) that produced
the best performances for feature C9 over the whole SisFall dataset in our
python implementation.

Figure 3.3: Using feature C9 in real-time within the Android application.
The figures in the first row represent the accelerations on the three axis,
while the value in the second row is that of feature C9 computed over the
previous 128 samples. The third row indicates whether this value is above
or below the predefined threshold.

We did not perform a systematic test with this application since even
simple episodic experiments showed that:

• The feature C9 detection technique worked very differently on different
devices, even with the same threshold (e.g. approximately the same
action was easily above threshold on some devices and hardly so on
others).

CHAPTER 3. EXPERIMENTS 29

• In any case, feature C9 proved to be sensitive not just to actual falls
but simply to any sudden movement (i.e. with an abundance of false
positives).

Another relevant observation made during these tests is that, as described
in Chapter 2, the sampling frequency of an Android device is not constant
by design (and reported in the official Android documentation). Such aspect
could certainly influence the performances of feature C9 classifications as well
as with any other techniques.

Due to the above reasons we decided to adopt machine learning techniques
for the next steps.

3.3 Machine Learning on SisFall

As the machine learning technique of choice, we considered that of LSTM
networks (see Chapter 1). To do so, we adapted and further developed an
LSTM implementation based on python and TensorFlow (Chevalier (2016)).

Unlike feature C9 the training activity of an LSTM is supervised hence
it requires an annotated dataset. More precisely, during the training phase,
an LSTM is unrolled1, so that its activation over an entire sequence of input
signals contained in a sliding window is transformed into the activation of a
much deeper feed-forward network (see Chapter 1).

However, this means that such supervised training requires a specific class
label (i.e. ADL vs fall) for each sliding window. Dividing each sequence
of signal in the SisFall dataset into sliding windows is not difficult but the
same dataset does not contain a pointwise temporal annotation that could be
directly applied to each such sliding window. Lacking a better alternative,
which will be described below, we used the C9 feature to generate labels
(See Figure 3.4). Specifically, we labeled the values either below or above
threshold as either ADL or fall, respectively, and used those labels for the
supervised learning algorithm. Clearly, by doing this, we could only make
the LSTM learn to reproduce the C9 statistical indicator.

For precision, in these experiments, we used a two-layered LSTM architec-
ture described in Chevalier (2016) (Figure). Such architecture is composed
as follows:

1. A feed-forward network with one hidden layer.

2. Two stacked LSTM cells.

1This activity is performed automatically in TensorFlow.

CHAPTER 3. EXPERIMENTS 30

Figure 3.4: Above: signals from the accelerometers. Below: the values com-
puted with feature C9: values above threshold (dashed line) are labeled as
fall. This screenshot is taken from the labeler program described later on.

3. A feed-forward network with one hidden layer.

Figure 3.5: The architecture of the network. A feed-forward network, fol-
lowed by two stacked LSTM cells, followed by another feed-forward network.

The rationale for choosing this architecture is because the author applied it
successfully to Human Activity Recognition (HAR) on a completely different
dataset (Anguita et al. (2013)). HAR is a different type of task in which
the target is classifying human activities like, for instance, walking, going
upstairs, going downstairs, sitting, standing and laying horizontally.

Such architecture was trained on the SisFall dataset with the addition of
the automatically-produced labeling obtained from feature C9 as described
above. Initial experiments produced an overall accuracy of about 91% which,
considering that the LSTM-based architecture was trying to learn a statisti-
cal indicator, is relatively low.

CHAPTER 3. EXPERIMENTS 31

In a second experiment, we adopted a data augmentation technique by which
we extended the SisFall dataset adding for each sequence the three rotations
of 90 degrees over the Z axis. Data augmentation techniques like this one
are typically used in machine learning to expand and enhance the dataset.
In this case, we wanted to overcome the limitation due to the fixed orien-
tation of the acquiring device which is intrinsic to SisFall. After re-training
the network architecture on such augmented dataset, we obtained a more
satisfactory accuracy of about 98%.

3.4 Beyond SisFall

In the light of what above, the SisFall dataset has two intrinsic characteristics
that make it (as it is) sub-optimal for our purposes:

• Only entire sequences are labeled.
The final application should be active 24/7 and be able to detect falls
in soft real-time (i.e. within 1-2 seconds). To train LSTM-based ar-
chitectures the dataset must be annotated with fine-grained temporal
labeling, ideally one label per each time tick.

• Specialized hardware with a fixed orientation was used for
acquisition.
Working on an Android smartphones is substantially different: first of
all no fixed orientation of the device can be assumed and, as seen in
the previous chapter, it is not even possible to assume a fixed sampling
frequency.

These reasons made us plan two distinct actions that are described below.

3.4.1 Fine-grained Temporal Labeling of SisFall

The only way to obtain a fine-grained labeling of the SisFall dataset is to
manually annotate every sequence in it.

To do so, we developed a specific software tool for navigating through
the original dataset and manually adding classifications associated to time
intervals (See Figure 3.6).

Three categories are defined:

• Warning (in orange).
Activities that are dangerous but still not representing a fall (for ex-
ample: stumbling)

CHAPTER 3. EXPERIMENTS 32

(a)

(b)

Figure 3.6: SisFall Data Labeler. Above: an example of the D19 activity
(inconsequential stumbling); the annotated interval is in orange while the
values of feature C9 are reported in the lower panel as additional information
to the human annotator. Below: an example of the F05 activity; the interval
corresponding to the fall is marked in blue and its aftermath in orange.

• Fall (in blue).
An effective fall, starting from the “point of no return” of losing equi-
librium up to hitting the ground.

• Aftermath (in orange, immediately after an interval in blue).
Activities (mostly involuntary) that follow the actual fall before final
stabilization.

The typical workflow performed by the human annotator is the following:

1. A specific sequence is selected from the SisFall dataset and shown on
screen.

CHAPTER 3. EXPERIMENTS 33

2. Annotations of the three different kinds above are edited manually.

3. Annotations are saved in a separate file when the “save” button is
pressed.

Doing as above allowed us, with the help of a few volunteers, to add a
fine-grained temporal labeling to every sequence in the SisFall dataset. Note
however that in this way the human annotators had to guess which was the
condition of the human being performing each activity by just analyzing
the sequence of accelerometer signals. Although with SisFall we had no
alternatives, this is sub-optimal in that a more realistic annotation could be
produced by referring to the actual action performed as it can be seen in a
recorded video (not available in SisFall).

3.4.2 Acquiring an Integrated, Enhanced Dataset

To overcome the above shortcomings of SisFall, a new acquisition campaign
has to be planned and the required set of tools must be realized.

In particular the new acquisitions should satisfy the following require-
ments:

• Accelerometers signals should be acquired with actual Android smart-
phones.

• Devices (i.e. smartphones) should be carried in different positions and
orientations.

• The action performed by the human being should be recorded in a video
and such video should be in sync with the acquisition of accelerometer
signals.

The main objective of these requirements is having an heterogeneous
dataset and make it possible to human annotators to work on activity videos
disregarding accelerometers signals entirely.

3.5 Body Network of Android Devices

To satisfy the requirements described above, we decided to implement a soft-
ware architecture comprising a “body network” composed of various Android
devices carried on body, which is connected to a remote controller that gov-
erns the synchronized acquisition of signals and videos.

CHAPTER 3. EXPERIMENTS 34

More precisely the architecture shown in Figure 3.7 has the following
characteristics:

• Several acquiring devices can be governed simultaneously so that a
single human composite activity will produce several different sequences
of signals.

• The controller module will govern the actual acquisition performed by
carried smartphones in order to ensure synchronism.

• The controller module, deployed on a tablet, will also be recording a
video while smartphones will be recording accelerometer signals.

Figure 3.7: The overall architecture of the body network for the acquisi-
tion experiments. A controller module send commands to the acquisition
modules, strapped on different parts of the body.

From a software standpoint, each acquisition module, when activated,
opens a listening TCP/IP socket and executes commands received from the
controller module via TCP protocol.
The recognized commands are:

• Connect to the controller module.

• Receive the username and the activity selected for performance from
the controller module (it will be used to determine the name of the
file).

CHAPTER 3. EXPERIMENTS 35

• Receive the “start” signal to begin recording.

• Receive the “stop” signal to end recording.

• Save the recorded signal sequence in a file on the internal storage.

• Send the recorded signal sequence to the controller module.

• Close the connection.

At the beginning of each acquisition episode the human performer will
be wearing the smartphones which will be properly activated. Then, the
controller module will be started on the tablet and will connect to each ac-
quisition module on smartphones.
From that point on, the entire recording activity is governed by the controller
module in the sense that a human coordinator will be starting and stopping
each acquisition using the controller module itself on the tablet. This means
that during the acquisition of accelerometer signals the human coordinator
will be pointing the video camera of the tablet towards the performer, so
that the required video could be recorded. Eventually, the locally-acquired
video and the remotely-obtained sequences of signals will be stored on the
tablet.

For extra safety each sequence of signals acquired is also saved in the
internal storage of each acquisition module. All files are named in a way that
is unique to each episode and type of activity performed.

A few screenshots from the app are shown in Figure 3.8.

The actual software implementation of both the acquisition module and
the controller module is by a unique app capable of fulfilling both roles,
according to what the user selects at startup time.
Actually, the app also implements two further operating modes:

• Standalone Mode (Figure 3.9).
This mode works on the smartphone alone, without remote TCP/IP
connection and is intended for collecting data without a supervisor.

• Web Server Mode (Figure 3.10).
In this mode the app starts a web server that also implements specific
web pages with javascript provisions for the complete remote control
of the application itself. In the intended usage, another user connects
to the app via a web browser (e.g. on a notebook) and controls the

CHAPTER 3. EXPERIMENTS 36

actions performed by the app. Each recorded sequence of signals is
stored locally by the app and also sent over to the remote web browser.

The software implementation of the body network architecture will be
completed by a software module to be executed on workstation for dataset
post-processing. Such module will perform the following functions:

• Storage of the associated sets of video recordings and signal sequence
files.

• Re-sampling of signal sequences with interpolation to obtain a constant
sampling frequency.

• Manual video annotation by human experts, which will be performed
by using a subtitle editor for simplicity.

• Production of additional files corresponding to each signal sequence
containing the labels extracted from video annotations.

3.6 TensorFlow on Android

Apart from the collection of an enhanced and extended dataset, we also
need to execute the detection procedures synthesized with machine learning
techniques on the target Android devices. More precisely, we plan to perform
the training of the LSTM-based architecture on a workstation and then apply
such architecture after training on the Android device.

For doing so we adopted a recently released (previously under develop-
ment) version of TensorFlow which is specifically conceived for Android (see
Chapter 2).

The main aspect involved in such transfer on Android devices is the capa-
bility to produce “frozen” and “pruned” trained models from TensorFlow on
workstation to TensorFlow Mobile. As described in Chapter 2, TensorFlow
Mobile will not be used for training but just for making inferences, namely
for detecting actual falls.

In this perspective, we can describe our complete architecture for au-
tomatic fall detection using machine learning techniques with the following
steps:

1. Acquisition of a specific dataset, via the body network architecture.

2. Labeling of the recorded videos for each activity performed.

CHAPTER 3. EXPERIMENTS 37

3. Transferring of video labeling to each corresponding sequence of ac-
celerometer signals.

4. Training (on workstation) of the LSTM-based architecture using the
full dataset of labeled sequences.

5. Freezing and pruning the trained model obtained.

6. Transferring this model on Android.

7. Perform systematic test of automatic fall detections directly with smart-
phones.

CHAPTER 3. EXPERIMENTS 38

(a)

(b)

(c)

Figure 3.8: Body network software modules: (a) the controller module estab-
lishes the TCP/IP connections with up to three acquisition modules; (b) after
connection, the controller module requires entering id data about the per-
former and the activity; (c) when the “start” button is pressed the controller
module starts the acquisition of accelerometer signals by remote modules and
starts recording the video.

CHAPTER 3. EXPERIMENTS 39

(a) (b)

Figure 3.9: Body network software modules: Standalone Mode. The user
enters id data and starts/stops recording.

CHAPTER 3. EXPERIMENTS 40

(a)

(b)

Figure 3.10: Body network software modules: Web Server Mode: (a) the
web interface to the application; (b) each recorded sequence is sent to the
browser.

Chapter 4

Results and Future
Developments

The general plan of this project is structured in three parts:

1. Data collection.
We need to record a large amount of data using the body network
architecture described in the previous chapter. These recordings will
then be manually labeled in order to obtain a viable dataset.

2. Training.
Our LSTM-based neural network architecture will be trained using the
newly acquired dataset. A frozen model of the network will be saved.

3. Testing on Mobile Devices.
The frozen model will be deployed on a smartphone, and used to run
TensorFlow Mobile inside an application.

Due to time restrictions, actual activities were only limited to data col-
lection and to some considerations about training.

4.1 Data Collection

Data collection is the first step of the process: to have a viable dataset, we
need to collect the accelerometer signals and relative videos from a large
number of people.
To collect data, we set up some appointments with volunteers in a safe envi-
ronment (a large gym with mattresses). Volunteers will perform some chosen

41

CHAPTER 4. RESULTS AND FUTURE DEVELOPMENTS 42

Code Activity

D01P Walking
D02P Jogging
D03P Walking upstairs and downstairs
D04P Sit in a chair, wait a moment and get up
D05P While sit in a chair, try to get up and collapse in the chair
D06P Standing, lay on a “bed” and get up on your feet
D07P Pick an object from the ground
D08P Stumble while walking but remain up still
D09P Stumble while walking and use a table to avoid falling
D10P Gently jump without falling
F01P Fall forward while walking
F02P Fall backward while walking
F03P Fall laterally while walking
F04P Vertical fall by fainting
F05P Fall while walking, with use of hands in a table to dampen fall,

caused by fainting
F06P Fainting from a chair
F07P Fall while trying to get up from a chair
F08P Fall while trying to sit down in a chair

Table 4.1: Types of activities selected for our dataset, derived from the SisFall
ones. We chose activities with a very different waveform from one another,
and excluded some impractical ones (e.g. sitting inside a car).

activities derived from the SisFall activities (listed in Table 4.1), while wear-
ing the body network described in the previous chapter.

The body network will be composed of three smartphones positioned in
different parts of the body:

• The right shoulder, fixed with an armband.

• The waist, fixed with a belt.

• The front left pocket of the pants.

The three smartphone will record the accelerometer signals, and a tablet
will act as a controller, sending commands to the smartphones and recording
the video of the activity with the body network architecture described in
Figure 3.7.

CHAPTER 4. RESULTS AND FUTURE DEVELOPMENTS 43

During a preliminary session we tested our system with one volunteer
performing all the activities. Some pictures taken during this session are
shown in Figure 4.1.

At the end of the session, both the accelerometer signals and the relative
videos are stored in the tablet.
The following step is to annotate the video. This will be done manually with
a software based off a subtitle editor. As described earlier, this procedure
will be done by human beings, with the rationale that seeing the video of
the performed activity will help a human annotator to easily determine the
beginning of each sub-activities (e.g. walking, stumbling, falling). Since the
video will be synchronized with the accelerometer signals, the labels from
the video will be automatically translated to the labels of the signals.

These signals and their relative labels will then be organized in a yet to
be defined format, to form our new dataset. The resulting dataset will then
be used for the training phase.

4.2 Training

Our LSTM-based neural network architecture, described in the previous
chapter, will be trained using the new dataset.
We set up a software infrastructure to perform the training, using python and
TensorFlow on a workstation, based on the original work by Chevalier (2016).

To feed the dataset to our network, we decided to split every activity using
a sliding widow (with N to be defined and s = 1). The label corresponding
to this window will then be computed in the following manner:

• If the window contains at least one temporal label of a fall, the entire
window is labeled as fall.

• If the window contains at least one temporal label of a warning, but
no falls, the entire window is labeled as warning.

• If the window does not contain neither warnings nor falls, it is labeled
as ADL.

The neural network will then have as input a list of windows and a list
of labels (one label for each window).

While the network architecture is the one described in Chapter 3, we can-
not exclude some changes and/or experimenting other architectures, based

CHAPTER 4. RESULTS AND FUTURE DEVELOPMENTS 44

on the results obtained. Also, a wide variety hyperparameters will probably
change during the training phase. Hyperparameters are parameters inde-
pendent from the network architecture, that must be decided a-priori. Since
they greatly influence the outcome of the network, we will try various com-
binations of them to be able to get to the best accuracy. The initially chosen
hyperparameters are listed in Table 4.2
Other changes during this phase are not foreseeable here, and will be decided
based on the results.

Name Value

Learning rate 0.0025
L2 constant 0.0015

Training epochs 300
Batch size 1500
LSTM size 32

Table 4.2: The hyperparameters as chosen by Chevalier (2016). The learning
rate influences the gradient descent method; the L2 constant influences the
regularization of the network; the number of training epochs is the number
of times the entire dataset goes over the whole network; the batch size is
how many samples go over the network at the same time; the LSTM size
indicates how many cells are inside each layer.

After training the network, we will save the frozen model in a binary file,
using an automatic procedure provided by TensorFlow, so we can deploy it
on a smartphone. As described before, the frozen model contains all the
informations about the trained network relevant to performing inference.

4.3 Testing on Mobile Devices

We will then deploy the frozen model to a Android smartphone, to perform
the testing of our fall detection system in a real-case scenario.

We already wrote an Android application that:

• Takes the frozen model as input.

• Reads signals from the accelerometer.

• Runs these signals through the frozen model using TensorFlow Mobile.

CHAPTER 4. RESULTS AND FUTURE DEVELOPMENTS 45

• Shows the output of the network to the user.

The app is absolutely similar to the one described in Chapter 2 and shown
in Figure 2.3.

Once the training phase will be completed, we will simply transfer the
frozen model from the workstation to the smartphone and test our system
using the developed app.

CHAPTER 4. RESULTS AND FUTURE DEVELOPMENTS 46

(a)

(b)

(c)

Figure 4.1: A volunteer performing activity F01P during a preliminary test-
ing session. The volunteer is carrying three smartphones; the tablet control-
ling them and recording the video can be seen.

Chapter 5

Conclusions

In this thesis we described the development of machine learning techniques
applied to automatic fall detection.

After describing the background theory regarding the automatic fall de-
tection techniques and the state of the art, specifically the SisFall dataset,
we introduced machine learning, focusing in particular on recurrent neural
networks and LSTM.

We summarized the tools used, and the reasons that led us to chose the
Android operating system and the Tensorflow framework.
We explored what a smartphone application for fall detection should do, fo-
cusing on the Android operating system.
TensorFlow and its functions were then described: we explained how Ten-
sorFlow works in a smartphone platform, and how we can train a network
on workstation and use the trained model on mobile devices.

We presented the experiments we performed, the transition from the Sis-
Fall dataset to a newer one, and the architecture we chose to use. We firstly
replicated the SisFall results, then applied machine learning techniques to
their dataset.
Going beyond, we described how a fine-grained labeling would lead to better
results, and developed a plan to acquire a new, enhanced, dataset. We also
developed a body network of sensors to collect the accelerometer recordings.
Lastly, we implemented an Android app capable of using a trained neural
network.

In the last chapter we discussed the results obtained, and outlined the
steps to take in the immediate future.

47

CHAPTER 5. CONCLUSIONS 48

From a scientific standpoint we learned that:

• Automatic fall detection is an open, difficult, problem.

• A common way to tackle this problem is to elaborate the signals from
accelerometers.

• There have been some approaches in literature, with the SisFall one
creating a dataset of recorded activities.

• We can record accelerometer signals coming from various smartphones
using a body network architecture and create a new, enhanced, dataset.

• Using machine learning we could improve fall detection. Specifically,
use TensorFlow to train a network (composed of LSTMs) specialized
for treating signals that vary over time.

• The labeling of the dataset is a crucial aspect of machine learning
problems.

• We can use a trained network directly on a smartphone, using Tensor-
Flow Mobile, to make real-time predictions.

In the near future, other activities regarding this project could follow:

• Improvement of the body network architecture. Smartphones are bulky,
and carrying more than three is uncomfortable. This could be improved
by using a small and low-power sensor tile, and by increasing the num-
bers of sensors. Some openings in this direction are currently at work.

• Improvement of the neural network architecture with more sophisticate
networks than LSTM. The main problem of the LSTM is that they need
a cache of signals to be kept, since every output depends on the signals
coming before it. A network capable of update its state without keeping
a cache would greatly improve performances.

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Cor-
rado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.,
Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur,
M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems.

Anguita, D., Ghio, A., Oneto, L., Parra, X., and Reyes-Ortiz, J. L. (2013).
A Public Domain Dataset for Human Activity Recognition Using Smart-
phones.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term depen-
dencies with gradient descent is difficult.

Chevalier, G. (2016). LSTMs for Human Activity Recognition.

Csáji, B. C. (2001). Approximation with artificial neural networks.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal func-
tion.

Domingos, P. (2012). A few useful things to know about machine learning.

Feng, P., Yu, M., Naqvi, S. M., and Chambers, J. A. (2014). Deep learning
for posture analysis in fall detection.

Frank, K., Vera Nadales, M. J., Robertson, P., and Pfeifer, T. (2010).
Bayesian Recognition of Motion Related Activities with Inertial Sensors.

Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget:
Continual prediction with LSTM.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning.

49

BIBLIOGRAPHY 50

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-term Memory.

Medrano, C., Igual, R., Plaza, I., and Castro, M. (2014). Detecting Falls as
Novelties in Acceleration Patterns Acquired with Smartphones.

Siegelmann, H. T. and Sontag, E. D. (1995). On the computational power of
neural nets.

Sucerquia, A., Lopez, J., and Vargas-Bonilla, J. (2017). SisFall: A Fall and
Movement Dataset.

Vavoulas, G., Pediaditis, M., Chatzaki, C., Spanakis, E., and Tsiknakis, M.
(2016). The MobiFall Dataset: Fall Detection and Classification with a
Smartphone.

Vilarinho, T., Farshchian, B., Gloppestad Bajer, D., Halvor Dahl, O., Egge,
I., Steinsland Hegdal, S., Lønes, A., N. Slettevold, J., and Mathias Weg-
gersen, S. (2015). A Combined Smartphone and Smartwatch Fall Detection
System.

