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Abstract 
 

Perceptual experiences and interactions with the environment are assumed fundamental 

to the development of conceptual knowledge. For instance, the spatial arrangement of 

words can affect the perception of similarity between the concepts they represent, 

supporting theories which suggest that the neural systems involved in spatial cognition 

also contribute to structuring conceptual knowledge. At the same time, however, 

increasing evidence points to language as a powerful medium for learning, suggesting a 

close interaction between perceptual and linguistic experiences in structuring conceptual 

knowledge. That is, while studies have shown that spatial distance can influence semantic 

similarity, it remains unclear whether this process is reciprocal. In this context, the present 

study aims to explore this potential bidirectional relationship. To do so, we employed a 

Distributional Semantic Model to quantify the semantic similarity of a set of words and 

used these values as predictors in an explicit spatial judgment task. Specifically, we 

hypothesized that the spatial distance between word pairs would be perceived as shorter 

for semantically related pairs compared to unrelated ones, suggesting a <compression= in 

the perception of space induced by linguistic information. Although our results revealed 

only a subtle trend in the direction of our hypothesis, these findings contribute to the 

ongoing debate on conceptual processing, which has traditionally been divided between 

embodied and linguistic perspectives. We propose reconsidering traditional views on 

embodied cognition, which often separate sensory and language experience, as findings 

increasingly support their interconnected nature, with future research aimed at clarifying 

the intricate connection between spatial and linguistic processing. 

Keywords: spatial distance, semantic similarity, distributional semantics models. 



3 

Abstract 

Le esperienze percettive e le interazioni con l9ambiente sono considerate fondamentali 

per lo sviluppo della conoscenza concettuale. Ad esempio, la disposizione spaziale delle 

parole può influenzare la percezione di similarità tra i concetti che rappresentano, 

supportando così la teoria che i sistemi neurali coinvolti nella cognizione spaziale 

contribuiscano anche alla strutturazione della conoscenza concettuale. Allo stesso tempo, 

diverse evidenze identificano il linguaggio come un potente mezzo per l9apprendimento, 

proponendo una stretta interazione tra esperienze percettive e linguistiche nella 

strutturazione della conoscenza concettuale. Tuttavia, mentre diversi studi dimostrano che 

la distanza spaziale può influenzare la similarità semantica, rimane poco chiaro se questo 

processo sia reciproco. In questo contesto, il presente studio mira a esplorare questa 

potenziale relazione bidirezionale. Pertanto, abbiamo utilizzato un Modello di Semantica 

Distribuzionale per quantificare la similarità semantica di un insieme di parole, usando 

questi valori come predittori in un compito di giudizio spaziale esplicito. In particolare, 

abbiamo ipotizzato che la distanza spaziale tra coppie di parole fosse percepita come più 

breve per coppie semanticamente relate rispetto a quelle non relate, suggerendo una 

<compressione= nella percezione dello spazio indotta dalle informazioni linguistiche. 

Sebbene sia stata rilevata solamente una tendenza nella direzione della nostra ipotesi, 

questi risultati contribuiscono al dibattito in corso sul processamento concettuale, 

tradizionalmente diviso tra prospettive embodied e linguistiche. A questo proposito, 

proponiamo di riconsiderare le visioni tradizionali della cognizione embodied, che spesso 

separano esperienza sensoriale e linguistica, poiché sempre più studi supportano la loro 
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natura interconnessa, con future ricerche volte a chiarire l9intricata connessione tra 

elaborazione spaziale e linguistica. 

Parole chiave: distanza spaziale, similarità semantica, modelli di semantica 

distribuzionale. 
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1. Introduction 

 

 Over the last two decades, research has increasingly focused on semantic similarity: 

this interest is due to the fact that our ability to perceive similarity is closely connected to 

our capacity to generalize, create categories and distinguish between different concepts 

(Medin, Goldstone & Gentner, 1993; Casasanto, 2008). But what does semantic similarity 

stand for? Do we consider all semantically related items as similar? To answer these 

specific questions, we must specify that there is a substantial difference between two 

concepts that might seem interchangeable, but which are not: similarity and relatedness. 

While the first term refers to items which can be substituted in a given context without 

changing the underlying semantics (such as cat and kitty), the second one indicates items 

which are not substitutable, even if semantically correlated (such as cat and tiger; Navigli 

& Martelli, 2019).  

 When talking about similarity, people often refer to spatial distance: this occurs 

because in human perception, objects or concepts that share similarities across almost any 

aspect can be considered close, while those that differ significantly can be regarded as far 

apart (Casasanto, 2008). Namely, arranging words according to different spatial 

dispositions can influence our perception of the actual conceptual similarity between the 

words. Moreover, an important body of research supports the idea that the exploration of 

conceptual knowledge – that is, the ability to understand concepts, principles, theories, 

models, or classifications – relies on mechanisms originally deputed to navigate physical 

space (Rinaldi & Marelli, 2020; Bottini & Doeller, 2020; Bellmund et al., 2018). In other 

words, the neurocognitive system which allows us to map and explore objects in the 

physical world must have been recycled or sublimated in order to let us navigate and 
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manipulate non-spatial information within our minds, giving structure to our conceptual 

knowledge (Buzsáki & Moser, 2013).  

 However, if on the one hand spatial mechanisms and computations can help us 

navigate conceptual knowledge, we must not forget that linguistic data itself can provide 

spatial orientation without relying on the previously described mechanisms (Rinaldi & 

Marelli, 2020). Indeed, despite being a debated topic, an increasing amount of research 

has shown that the language system is an ideal environment for learning, suggesting a 

close interaction between both perceptual and linguistic experiences in the organization 

of conceptual knowledge (Andrews, Vigliocco & Vinson, 2009; Davis & Yee, 2021). 

Furthermore, several pieces of evidence suggest that linguistic information can itself 

influence perception (Lupyan et al., 2020).  

 As mentioned before, someone could use alternatively the terms similar or close 

conveying the same meaning: for example, the sentence <these two options are close= 

would lead the listener to interpret it as referring to the similarity between the options 

rather than their physical proximity. These metaphorical expressions are not just linguistic 

devices. Rather, they reflect how people rely on their concrete sensory experiences when 

mentally representing abstract relationships (Pauels, Schneider & Schwarz, 2023; 

Barsalou, 2008; Lee & Schwarz, 2014), according to the Conceptual Metaphor Theory 

(Lakoff & Johnson, 1980, 1999). This mental association activates the concept of spatial 

closeness and makes it easier to process information about similarity (Pauels et al., 2023). 

For instance, when people see two similar geometric figures positioned near each other, 

they recognize their similarity quicker than when they are farther apart (Boot & Pecher, 

2010). In the same way, when people observe objects that are positioned close to each 
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other, they tend to judge them as more similar than when the same objects are spaced 

further apart (Guerra & Knoeferle, 2014).  

 The present work focuses on the association between space and semantic similarity. 

In particular, we question whether this relationship is bidirectional: if distance can 

influence similarity – as Casasanto (2008) demonstrated –, is it possible to assume the 

opposite? Does the semantic similarity of two objects affect the memory of their location 

in space? Is it true that the conceptual similarity between words can influence our concrete 

experience, and thus our perception of the physical distance between two objects?  

 In this first introductory chapter, we will discuss the constructs which are the basis 

of our research demand. Firstly, we will provide a detailed description of the theories on 

semantic similarity, with particular reference to the work of Harris (1954, 1970), and we 

will introduce Distributional Semantic Models, which will allow us to quantify the 

meaning of a set of words and calculate the semantic similarity between them during our 

experimental session. Moving forward, we will focus on the association between 

semantic similarity and the concept of spatial distance, once again presenting the 

theoretical foundations and offering a new perspective on the neural basis underlying 

these mechanisms. Afterwards, we will describe the methods, the experimental design 

and the tools used for testing our hypothesis. We will then present the results, which will 

be discussed thoroughly and framed in the reference literature in the fourth chapter, along 

with the limitations, implications, and future perspectives of the current study. At last, we 

will address our experimental hypothesis in the light of the obtained results, giving an 

answer to the long-awaited question: does close in mind mean close in space?  



8 

1.1.  Semantic Similarity: The Representation of Meaning 

 Language allows us to express the vast internal landscape of our thoughts. But what 

is language? And how does language get its meaning? For centuries, disciplines such as 

psychology, linguistics and philosophy have focused on one question: that is, how 

meaning is represented and organized by the human brain. If we think about it: what does 

it mean to know what a cat is? To truly understand the meaning of the word <cat=, is it 

necessary to calculate an average of different exposures to individual cats? Or, instead, is 

it enough to collect certain characteristics that are typical of a cat (such as being small, 

striped, or whiskered) that are acquired through experience, and then stored and activated 

after encountering a cat? It is not surprising that substantial efforts have been devoted to 

understanding the processes involved in constructing meaning from experience, given 

that meaning plays a fundamental role in all cognitive functions (Kumar, 2021).  

 One of the earliest attempts to conceptualize how meaning is learned and 

represented was made by Osgood (1952), who proposed a combination of associational 

and scaling procedures: the semantic differential technique. Using this approach, Osgood 

collected feedbacks from multiple participants on various concepts (like peace) across 

different polar scales (such as hot-cold or positive-negative). He discovered that the 

ratings consistently aligned with three universal dimensions: evaluation (good-bad), 

potency (strong-weak), and activity (active-passive). By doing so, Osgood developed a 

practical method for exploring how semantic meaning is represented, challenging the 

notion of a localist representation and offering initial evidence that the meaning of a 

concept could be spread across multiple dimensions (Kumar, 2021). Another theory 

proposed by Harris (1954; 1970), one of the most significant contributors to the topic, is 
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the distributional hypothesis. This hypothesis is often stated in terms such as <you shall 

know a word by the company it keeps= (Firth, 1957); <words which are similar in meaning 

occur in similar contexts= (Rubenstein & Goodenough, 1965); <a representation that 

captures much of how words are used in natural context captures much of what we mean 

by meaning= (Landauer & Dumais, 1997); and <words that occur in the same contexts 

tend to have similar meanings= (Pantel, 2005). Hence, the core idea behind this theory is 

that there is a correlation between distributional similarity and meaning similarity: as a 

result, we learn meaning by observing how words frequently appear together in natural 

language (Sahlgren, 2008; Kumar, 2021). For instance, the words cat and whisker may 

be connected because they often occur together, whereas the words cat and tiger may be 

linked because they co-occur with similar words. But how does meaning fit into the 

distributional paradigm? Firstly, Harris – following Bloomfield – rejects the use of 

meaning as an explanans in linguistics (Lenci, 2008): 

<As Leonard Bloomfield pointed out, it frequently happens that when we do not rest with the 

explanation that something is due to meaning, we discover that it has a formal regularity or explanation.=1
 

Secondly, both Harris and Bloomfield shared a strong interest in linguistic meaning. 

Like Bloomfield, Harris recognized that his linguistic theory could not fully capture 

meaning in all its social dimensions. Despite this, Harris was confident in the 

effectiveness of his distributional method. He believed that if extralinguistic factors 

influenced linguistic events, there would always be a corresponding distributional pattern 

that could explain the event. Harris held the belief that linguistics, as a science, should 

focus solely on the internal structure of language, with everything within the language 

being subject to linguistic analysis, a process he called distributional analysis. According 

1 Harris, 1970, p. 785. 



10 

to this perspective, if meaning is purely linguistic (i.e. has a strictly linguistic dimension), 

it must be prone to distributional analysis (Sahlgren, 2008). Therefore, even though 

Bloomfield (1933) believed that meaning would lie outside the scope of linguistic 

research2, Harris acknowledged that semantic analysis could also benefit from a strong 

empirical foundation through the distributional approach. Linguistics can account for 

meaning, at least in aspects that can be defined using the same methods applied to other 

linguistic entities: specifically, distributional analysis techniques (Lenci, 2008). 

Additionally, the distributional perspective asserts that linguistic meaning is 

fundamentally differential, not referential (since a referential view would require an extra-

linguistic component): namely, meaning differences are mediated by distributional 

differences (Sahlgren, 2008). Hence, this approach allows us to measure the differences 

in meaning between linguistic entities and offers a method for identifying and 

determining semantic similarity between words: 

<…if we consider words or morphemes A and B to be more different in meaning than A and C, then 

we will often find that the distributions of A and B are more different than the distributions of A and C. In 

other words, difference of meaning correlates with difference of distribution.=3 

Another historically significant development in the study of meaning was the 

distinction between episodic and semantic memory, proposed by Tulving in 1952. Within 

long term memory structures, Tulving identified two kinds of declarative memory: 

episodic memory, a neurocognitive system that enables human beings to remember past 

experiences (Tulving, 2002), and semantic memory, the cognitive system where 

2 <The statement of meaning is therefore the weak point in language-study, and will remain so until human 
knowledge advances very far beyond its present state= Bloomfield (1933, p. 140); <the linguist cannot 
define meanings= (ibidem, p. 145). 
3 Harris, 1970, p. 786. 
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conceptual knowledge is stored (Borge-Holthoefer & Arenas, 2010). Respectively, 

episodic memory refers to the recollection of personal experiences that are tied to 

particular times and locations (as an example, remembering seeing a black cat on a roof 

last week), while semantic memory stores general knowledge about the world, including 

the meanings of verbal symbols (such as words), in a way that is not tied to any specific 

sensory modality (Gleason & Ratner, 1997; Kumar, 2021). For instance, semantic 

memory would hold information about what a cat is, what it looks like and similar facts, 

all represented through language. Moreover, this distinction was reinforced by early 

neuropsychological studies: notably, the article by O9Kane, Kensinger and Corkin (2004) 

investigates the differences between semantic memory and episodic memory through the 

case study of patient H.M., who suffered from profound amnesia following the removal 

of medial temporal lobe (MTL) structures. The researchers demonstrated that H.M. was 

able to acquire semantic knowledge through repeated exposure and practice, despite being 

unable to recall the specific episodes where the learning took place: as a result, we know 

that semantic and episodic memories are distinct functions, with episodic memory heavily 

dependent on the hippocampus and semantic memory relying on other cortical areas. 

Three methodologies have emerged in order to model the structure and organization of 

semantic memory from such findings: network-based approaches, feature-based models 

and distributional models (Kumar, 2021).  

One of the simplest methods to organize concepts, which also served as an 

inspiration for building computational network-based models of semantic memory, was 

the Hierarchical model (Collins & Quillian, 1969), presented in Figure 1. Collins and 

Quillian proposed that conceptual information is organized in a hierarchical tree, with 

general concepts (like <animal=) at the top and more specific concepts (like <canary=) at 
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the bottom. Each concept is characterized equivalently by a set of features held within 

each concept node and by pointers connecting it to other nodes. Properties of concepts 

within a category are stored at the highest node in the hierarchy and are true for all 

concepts below (for example, the feature has wings is stored at the <bird= node, not the 

<animal= or <canary= nodes), implementing in this way a form of cognitive economy 

(Cree & Armstrong, 2012; Szymański & Duch, 2012). 

Figure 1. Hierarchical model of semantic memory (from Szymański & Duch, 2012). Original network 
proposed by Collins and Quillian (1969). 

 

 However, it is clear that semantic memory structures are not static. When we 

consider new relationships between two or more concepts that are distant from each other 

in the hierarchical structure, shortcuts or direct associations between these concepts are 

created: this specific process is something that this model could not fully explain 

(Szymański & Duch, 2012). A more realistic approximation to brain processes 

responsible for acquisition of new semantic knowledge was the Spreading activation 

model (Collins & Loftus, 1975), shown in Figure 2. This updated model arranged 

concepts in the form of a lexical network (Kumar, 2021), where links between nodes 
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describe various relations, including semantic similarities between concepts stored in the 

network (Szymański & Duch, 2012). A concept that is analysed at a given moment (that 

is, a current thought) is considered to be active and symbolizes coordinated neural activity 

across multiple brain regions. This new framework was extensively applied to more 

general theories of language, memory, and problem solving (Anderson, 2000), albeit 

presenting some objective criticalities: in fact, the model failed to distinguish between 

different semantic relationships between concepts, treating all connections as equivalent 

(Rogers, 2008). 

 

 

 

 

 

 

 

 

Figure 2. Spreading activation model of the semantic memory (from Szymański & Duch, 2012).  

 

Around the same time, Smith, Shoben and Rips (1974) introduced an alternative 

representational format that relied on the notion of a set of semantic features representing 

concepts (a cat <has whiskers=, <meows=, <has a tail=), instead of an unanalyzable localist 

node within a network (Kumar, Steyvers & Balota, 2022). In this feature-based model, 

concepts had two types of semantic features: defining features shared by all concepts, and 
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characteristic features specific to some exemplars only (Kumar, 2021). For instance, all 

cats are mammals (defining feature), but not all cats are domestic (characteristic feature). 

These early explorations highlight the importance of considering both the nature of the 

representation (network-based or feature-based) and the specific processes (spreading 

activation or feature comparison) that access these representations when explaining 

human behaviour (Kumar et al., 2022).  

An important class of models in addition to feature-based and network-based 

models are Distributional Semantic Models (DSMs), also referred to as corpus-based 

semantic models, vector spaces, semantic spaces or word-space models, all of which are 

inspired by some version of the distributional hypothesis (Harris, 1954; Sahlgren, 2008; 

Baroni & Lenci, 2010; Rubinstein et al., 2015). As we have explained, this hypothesis is 

none other than a specification of the assumption that word meanings are acquired 

through experience (Günther, Marelli & Rinaldi, 2019). Indeed, as stated by Jenkins 

(1954), <intraverbal connections arise in the same manner in which any skill sequence 

arises, through repetition, contiguity, differential reinforcement= (p. 112). Although one 

could argue that DSMs date back to early work by Osgood (1952), these models have 

gained increasing success within the past decade and are nowadays considered the leading 

approach to lexical meaning representation in Natural Language Processing, Artificial 

Intelligence, and cognitive modelling (Lenci et al., 2022). This remarkable success is 

certainly due to the availability of large text databases and to the advancement of several 

machine learning algorithms (Kumar et al., 2022).  

However, Sahlgren (2006) clearly states that it <cannot be stressed enough that the 

word-space model is a computational model of meaning, and not a psychologically 

realistic model of human semantic processing= (pp. 134-135) and that they represent <not 
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the meanings that are in our heads, and not the meanings that are out there in the world, 

but the meanings that are in the text= (Sahlgren, 2008, p. 46; Günther et al., 2019a). Thus, 

while they may be highly beneficial for machine applications and artificial cognitive 

systems, DSMs are not as fitting as a psychological model for human semantic 

representations (for a demonstration see Niven & Kao, 2019; Günther et al., 2019a). 

Nevertheless, these objections can be addressed with both theoretical and empirical 

reasoning. From a theoretical point of view, corpus-based semantic models are seen as 

valuable tools for simulating how humans learn and use language and concepts based on 

the information they get from their surroundings (Landauer and Dumais, 1997; Baroni & 

Lenci, 2010; Mandera, Keuleers & Brysbaert, 2017; Hollis, 2017). As a matter of fact, 

distributional models are set up as a theory explaining how semantic representations are 

acquired (Lenci, 2008). Moreover, DSMs are rooted in the tradition of learning theories 

postulating that humans excel in capturing statistical patterns in their environments 

(Anderson & Schooler, 1991) and extracting information from them (see also Günther, 

Smolka & Marelli, 2019). From an empirical point of view, a significant amount of 

research shows that DSMs can effectively model and predict human behaviour in 

numerous semantic memory-related tasks, as we will further analyse and discuss in the 

next paragraph, paying particular attention on the functioning and the different types of 

these models.  
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1.2.  Distributional Semantic Models (DSMs) 

 Distributional Semantic Models help us understand word meanings by analysing 

how words are used together, showing that meaning comes from context and 

relationships, not just definitions. As explained before, the concept behind DSMs is that 

words with similar meanings are employed in similar contexts (Harris, 1954; Mandera et 

al., 2017). As an example, when comparing the contexts in which the English nouns car, 

train and table appear, it is clear that the adjectives and verbs associated with car and 

train are much more alike than those for table. Cars and trains can be described as fast 

or air-conditioned, while tables cannot. Therefore, according to the distributional 

hypothesis, this provides empirical evidence that the meanings of car and train are more 

closely related to each other than they are to the meaning of table (Ježek, 2016).  

 DSMs implement this assumption by mapping each word computationally to a 

high-dimensional vector in a shared semantic space (Anceresi et al., 2024). The distance 

between these vectors, calculated using the cosine of the angle between them, is used as 

an indicator of how similar the meanings of the words are. Concretely, most DSMs 

represent the meaning of a word with a vector that records how frequently the word 

appears in various contexts within a corpus, such as documents or short passages. This 

vector-based representation allows DSMs to measure how closely related two words are 

by using geometric methods, particularly by calculating the angle between their vectors 

(Marelli & Baroni, 2015). Essentially, the closer two vectors are in this semantic space, 

the more similar the meanings of the words they represent are (Lenci, 2018). This concept 

is depicted in a simplified way in Figure 3. 
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Figure 3. In this simplified example of a DSM, the words automobile, car, and horse are represented by 
vectors based on how often they appear with the context terms runs and wheels in a hypothetical dataset. 
The vectors for automobile and car – which share similar contextual patterns – form a smaller angle, 
indicating higher similarity in meaning. In actual DSMs, these vectors would be much more complex, with 
hundreds or even thousands of dimensions (from Marelli & Baroni, 2015). 

 

 Among the most famous word-vector models, a very influential one has been Latent 

Semantic Analysis (LSA; Landauer & Dumais, 1997), which counts the frequency of a 

word within a document or paragraph to build its vector representation (Mandera et al., 

2017). Likewise, the Hyperspace Analogue to Language (HAL; Lund & Burgess, 1996) 

uses co-occurrence data to map out the relationships between words in a semantic space 

(Azzopardi, Girolami & Crowe, 2005; Bullinaria & Levy, 2007). These word-vector 

models have been effectively implemented across nearly all areas of cognitive science, 

including fields such as psycholinguistics (Jones, Kintsch & Mewhort, 2006), artificial 

intelligence (Turney & Pantel, 2010), computational psychology (Jones, Willits & 

Dennis, 2015), cognitive neuroscience (Mitchell et al., 2008), social psychology (Lenton, 

Sedikides & Bruder, 2009), education (Wade-Stein & Kintsch, 2004), psychiatry 

(Elvevåg et al., 2007) and biomedicine (Cohen & Widdows, 2009). 
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 Recently, a new family of DSMs has emerged: Neural Language Models (Collobert 

et al., 2011; Mikolov et al., 2013a, 2013b), especially the one implemented in the 

word2vec library (Acquaviva et al., 2020), which have become increasingly successful, 

even surpassing their predecessors in number of citations (currently about 45.000 

citations on Google Scholar, compared to the 9.000 of LSA; Günther et al., 2019a). These 

neural-network–based models generate vectors by training them to predict contextual 

patterns, instead of simply encoding the co-occurrences of words: this approach is 

necessary in order to identify closer connections between words based on the likelihood 

of them appearing together in different contexts (Marelli & Baroni, 2015).  

 An advantage of DSMs is that they can effectively induce and encode meaning 

representations for thousands or even millions of words which makes them highly useful 

for designing experiments and simulations (Marelli & Baroni, 2015). Moreover, since 

DSMs are based on associative learning models that are cognitively plausible (Günther et 

al., 2019a; Mandera et al., 2017), they can be understood as computational simulations of 

human semantic memory (Anceresi et al., 2024). In line with this perspective, DSMs have 

been shown to effectively predict human performance across several cognitive tasks, such 

as semantic priming (see Marelli, 2017; Günther, Dudschig & Kaup, 2016; Lapesa & 

Evert, 2013) and false memory paradigms (Gatti et al., 2023). Data from these models 

exhibit a strong correlation with human semantic similarity ratings (Baroni, Dinu & 

Kruszewski, 2014; Landauer & Dumais, 1997). Recently, DSMs have also been validated 

through neuroscientific approaches. The vector representations produced by DSMs have 

been found to closely align with brain activity patterns observed in neuroimaging studies 

(see Mitchell et al., 2008) and with electrical responses on the scalp (Murphy, Baroni & 

Poesio, 2009) during the processing of language. This suggests that DSMs not only model 
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semantic relationships computationally but also mirror neural mechanisms involved in 

language comprehension (Marelli, 2017). 

 In summary, DSMs conceptualize meaning by representing words within a 

multidimensional semantic space. Each word is encoded as a vector, and the spatial 

relationship between these vectors – such as their proximity – serves as a measure of 

semantic similarity: words that occur in similar contexts are positioned closer together, 

reflecting their shared meanings. This spatial framework provides a geometric structure 

to semantic representation, which is primarily a methodological tool. Indeed, the real 

significance of these models lies in their connection to psychologically plausible learning 

mechanisms (Rinaldi & Marelli, 2020). Recent DSMs, particularly those based on 

prediction, reflect these associative learning models (Günther et al., 2019a) and perform 

impressively in tasks such as analogical reasoning. Hence, DSMs question the traditional 

emphasis on spatial mechanisms in organizing knowledge (Bottini & Doeller, 2020), 

showing that general-purpose associative learning is key to structuring conceptual 

understanding (Ekstrom, Harootonian & Huffman, 2020). Furthermore, some studies 

have shown that brain areas like the hippocampus and parietal cortex, often linked to 

spatial processing, are equally involved in associative learning – with neural responses 

aligning closely to patterns derived from DSMs (Wang et al., 2018; Rinaldi & Marelli, 

2020). For instance, the posterior parietal cortex is linked to probabilistic reasoning more 

than it is to spatial processing (Wendelken, 2015). This highlights the broader cognitive 

impact of distributional semantics, suggesting that spatial reasoning may emerge from 

linguistic experience and associative processes rather than inherent spatial strategies. The 

deeply interconnected relationship between space and language experience is the intricate 

topic that will be examined in detail in the next section. 
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1.3.  The Space of Words 

 Space is commonly used to convey similarity, as people often use terms such as 

close or far apart to refer to things that are either similar or dissimilar (Casasanto, 2008; 

Tuena et al., 2023). During childhood, humans develop implicit associations between 

spatial dimensions (such as length, size, position) and different non-spatial concepts, 

including emotional valence, number, and time (Pitt & Casasanto, 2022; Starr & 

Srinivasan, 2021; Casasanto & Henetz, 2012). Besides, according to Construal Level 

Theory (Trope & Liberman, 2010), people tend to form mental constructions of things 

that are psychologically distant – such as the past, the future or hypothetical scenarios. 

This mental process is closely connected to the spatial metaphor often used to describe 

similarity: as explained by Trope and Liberman (2010), psychological distance is 

considered as the subjective perception that something is close or far away from the self 

– here, and now – with the self being the main point of reference (Huang & Zhang, 2023). 

This distance can be manifested in different dimensions such as social distance, 

hypotheticality, time and space.  

Therefore, we know that spatial metaphors are deeply-rooted in language: for 

instance, sentences like <His spirits were soaring= or <She is feeling low= indicate a clear 

example of a spatial metaphor that associates up with positive emotions and down with 

negative ones (Lakoff & Johnson, 1980; Pitt & Casasanto, 2022), which is the same 

implicit metaphor conveyed by gestures such as the thumbs-up sign or the corresponding 

<like= button. Certainly, these are not the only metaphors we encounter daily: most of 

these spatial metaphors connect several non-spatial domains to different spatial 

dimensions across three axes – lateral, vertical, and sagittal (Pitt & Casasanto, 2022). We 
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refer to high and low numbers using vertical space, discuss political positions using 

lateral space (left and right), and describe time management with sagittal space (moving 

meetings forward or back in time). In addition, we use spatial terms to describe quantities 

as big or small, vacations as long or short, and relationships as close or distant.  

As we have mentioned in this introductory chapter, metaphor theorists argue that 

metaphors are not merely linguistic tools but rather, they are fundamental to how we 

conceptualize abstract ideas (Lakoff & Johnson, 2008; Gibbs, 1994; Casasanto & Bottini, 

2014). Indeed, we unconsciously activate spatial representations – height, size, proximity, 

and depth – whenever we think about abstract domains like numbers, questions, theories, 

or relationships, just as we would each time we perceive and distinguish physical objects 

in the real world. As Benjamin Whorf (2012) observed: 

<Physical shapes 8move, stop, rise, sink, approach9 in perceived space; why not these other referents 

in their imaginary space? This has gone so far that we can hardly refer to the simplest nonspatial situation 

without constant resort to physical [spatial] metaphors. I <grasp= the <thread= of another9s arguments, but 

if its <level= is <over my head= my attention may <wander= and <lose touch= with the <drift= of it, so that 

when he <comes= to his <point= we differ <widely,= our <views= being indeed so <far apart= that the <things= 

he says <appear= <much= too arbitrary, or even <a lot= of nonsense!=.4
 

 The systematicity and prevalence of these metaphorical expressions led Lakoff and 

Johnson (1980) to propose two complementary conceptual mappings to describe the close 

relationship between space and similarity: spatial proximity as similarity and spatial 

distance as dissimilarity, or alternatively, similarity as spatial proximity and dissimilarity 

as spatial distance (Tuena et al., 2023). This concept is explained thoroughly in their 

theory, which will be discussed in the following paragraph. 

4 Whorf, 2012, p. 146. 
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1.3.1. The Conceptual Metaphor Theory (CMT) 

 The idea that abstract concepts rely on a few simpler concepts that are grounded in 

sensorimotor experience is frequently associated with linguist George Lakoff and 

philosopher Mark Johnson, who claimed that Conceptual Metaphor Theory (CMT) was 

one of <three major findings of cognitive science= (1999, p. 3; Casasanto, 2010). An 

example of this phenomenon is metaphors in language: indeed, expressions like <time is 

money= or <argument is war= reveal how we use concrete and familiar experiences to 

frame and encompass abstract concepts in a spatial manner (Lakoff & Johnson, 2020). 

These experiential concepts include a set of basic spatial relations (up/down, front/back), 

a set of basic actions (eating, moving) and a set of physical ontological concepts (entity, 

container). According to this perspective, any concept that does not directly derive from 

physical experience must be metaphorical (Boroditsky, 2000).  

 Nonetheless, at first, the belief that conventional metaphors in language could 

reflect the structure of abstract concepts was upheld almost solely by linguistic evidence, 

with additional support from a computational model that demonstrated, in theory, how 

the meanings of certain linguistic metaphors could be learned and represented 

(Narayanan, 1997; Casasanto, 2010). Without non-linguistic evidence, this idea remained 

<just an avowal of faith= among scientists who strongly believed that the mind could be 

explained as a product of natural selection, that is, an exaptation5 (Pinker, 1997, p. 301).  

5 The neologism <exaptation= was introduced for the first time by palaeontologists Stephen Gould and 
Elisabeth Vrba (1982) in order to describe two evolutionary mechanisms: (1) a functional shift in a 
Darwinian sense (such as the re-use by natural selection of a structure with previously different purposes); 
(2) a functional cooptation, that is, an evolutionary mechanism which is not entirely described as a process 
of standard adaptation because, at the beginning, a specific trait was not originally designed to serve that 
exact purpose (Pievani & Serrelli, 2011). 
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Lera Boroditsky (2000) was one of the first researchers to conduct behavioural 

experiments with the aim of testing Conceptual Metaphor Theory, offering a more 

rigorous empirical treatment of metaphorical representation. In particular, she exploited 

the fact that speakers must choose a specific frame of reference when talking about spatial 

or temporal sequences (Casasanto, 2010; Bundgaard, 2019). In daily life, some 

expressions we commonly use suggest that we are moving through time or space (such 

as we’re approaching Christmas; we’re approaching Maple Street). Conversely, other 

phrases suggest that objects or events are moving in relation to each other (Christmas 

comes before New Year’s; Maple Street comes before Elm Street). In one experiment, 

Boroditsky showed that priming participants with spatial frames of reference helped them 

to interpret temporal sentences, but not vice versa. This asymmetry reflects a common 

linguistic pattern: people describe abstract concepts – such as time – in terms of more 

concrete ones, that is, space (Lakoff & Johnson, 1980). Based on these findings, 

Boroditsky proposed the Metaphoric Structuring View, which stated that (a) the domains 

of space and time are conceptually connected, and (b) spatial information can be helpful, 

though not essential, for thinking about time (Casasanto & Boroditsky, 2008). 

As we said, in most of these conventional metaphors language from a concrete 

domain is used to talk about the more abstract domain (Lakoff & Johnson, 1980; Lakoff 

& Kovecses, 1987; Boroditsky, 2000). Moreover, these metaphors often reveal a 

particular source-to-target mapping, such as we can see in the common expressions <life 

is a journey=, <mind is a container= and <ideas are food=. For instance, to better illustrate 

the <ideas are food= schema, we propose this clarifying example: <if you really cannot 

wait to sink your teeth into the theory, you will have to wait until the meaty part of the 

paper.= Typically, source domains are concrete and grounded in perception and physical 
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actions, while target domains are purely abstract and can be experienced only through 

interoception6 or introspection. A cross-domain mapping from a source domain to a target 

domain can be represented as <target is source= (for example, similarity is proximity), or, 

as an alternative, <source → target=, as in <proximity → similarity= (Lakoff & Johnson, 

1999; Casasanto, 2008; Denroche, 2024). In this pervasive metaphor, the abstract concept 

of similarity is represented by the concrete experience of spatial closeness (Casasanto, 

2008; Boot & Pecher, 2010; Winter & Matlock, 2013; Pauels et al., 2023). Notably, the 

influence of the <similarity is proximity= metaphor on similarity judgments applies only 

to conceptual similarity. Casasanto (2008) has demonstrated that when participants were 

asked to judge tools on their similarity in use (hence, conceptual similarity), tools shown 

close together were seen as more similar than tools placed far apart. However, when 

participants were asked to focus on visual appearance, tools shown close together were 

judged as less similar than tools shown far apart. Altogether, these findings suggest that 

spatial relationships play a key role in shaping how we perceive abstract concepts. Still, 

an interesting question remains: does the mental association between proximity and 

similarity work both ways? In other words, could similarity also impact how we judge 

physical distance? In the next paragraph we emphasize the key points of A Theory of 

Magnitude (ATOM; Walsh, 2003; Bueti & Walsh, 2009), a theory which provides 

behavioural and neurocognitive evidence towards the assumption that space, time, and 

number are processed by a single cross-domain magnitude system in the brain. 

Afterwards, we will explore the hypothesis that the same neurocognitive system that 

appears to support spatial cognition is also used for the organization of conceptual 

knowledge (Bellmund et al., 2018; Bottini & Doeller, 2020). 

6 That is, the perception of the state of the body (Ceunen, Vlaeyen & Van Diest, 2016).
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1.3.2. A Theory of Magnitude (ATOM) 

 Embodied cognition is the term used to describe how the individual sensorimotor 

experience contributes to conceptual knowledge, while also acknowledging the universal 

physical limitations of the human body (Fischer, 2012). For many years, studies inspired 

by embodied cognition have explored how concepts and language are rooted in 

sensorimotor and emotional systems (Pulvermüller, 1999; Barsalou, 1999; Gallese & 

Lakoff, 2005). The aim of these studies was to challenge the language-of-thought theory 

(Fodor, 1975) and the idea that sensorimotor experience would be converted in a semi-

linguistic mental format (Borghi, 2020). Crucially, A Theory of Magnitude (Walsh, 2003; 

Bueti & Walsh, 2009) by itself does not falls under the embodied cognition framework, 

but simultaneously, ATOM gains valuable insights from the embodied cognition approach 

on how not only actions but general sensorimotor experiences can help shape conceptual 

knowledge. In his theory, Walsh suggests that magnitude is represented in a domain-

general way, in which time, numbers and space are computed according to a common 

metric and they rely on the same neural resources (Fabbri, Cancellieri & Natale, 2012; 

Winter, Marghetis & Matlock, 2015). Indeed, the ATOM theory posits that a shared neural 

system for processing spatial, temporal, and numerical quantities provides adaptive 

advantages by allowing the coordination of information needed for actions such as 

grasping, pointing or running (Walsh, 2003; Bueti & Walsh, 2009). This system, located 

mainly in the parietal cortex, is activated to assess both spatial distances, numerical 

quantities or time intervals.  

On the one hand, the ATOM model has garnered substantial behavioural evidence: 

for instance, a vast body of research suggests that the interaction between time and space 
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reflects a metaphorical representation of time along a left-to-right spatial line (Casasanto 

& Boroditsky, 2008; Vallesi, Binns & Shallice, 2008; Frassinetti, Magnani & Oliveri, 

2009; Merritt, Casasanto & Brannon, 2010; Fabbri et al., 2012). Typically, short durations 

of time are mentally placed on the left side of this line, while long durations are positioned 

on the right. As further confirmation, Ishihara et al. (2008) proposed the Spatial–Temporal 

Association of Response Codes (STEARC) effect: in their study, participants pressed one 

of two response keys depending on whether the timing of a stimulus occurred earlier or 

later than expected. The results revealed a consistent association between left-hand 

responses and earlier timings, and right-hand responses with later timings. This 

interaction between time and space supports the concept of a Mental Time Line (MTL), 

where shorter temporal intervals are mapped to the left side and longer intervals to the 

right in a left-to-right mapping (see Torralbo, Santiago, & Lupiáñez, 2006; Arzy, Adi-

Japha & Blanke, 2009; Fabbri et al., 2012). Another fascinating behavioural evidence is 

that asking people to generate random numbers while walking affects their decision of 

turning left or right (Shaki & Fischer, 2014). In this study, the authors reported that when 

people generate a small number their probability of turning left becomes higher, while 

generating a larger number tends to result in a right turn. The same is true for the opposite 

direction of concept-motor interactions: a small number is more likely to be generated if 

the intention is to turn left, and a larger number is more likely to be generated if the 

intention is to turn right. Furthermore, neuroimaging studies show that the bilateral intra-

parietal sulcus (IPS) and surrounding areas are activated when processing spatial and 

numerical magnitudes (Hubbard et al., 2005; Kaufmann et al., 2008; Pinel et al., 2004; 

Winter et al., 2015). The IPS is also involved in perceiving time, as seen in a functional 

magnetic resonance imaging (fMRI) study by Coull and Nobre (1998): in fact, an 
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increased blood-oxygen-level-dependent (BOLD) signal in the left IPS was assessed 

during tasks requiring attention to temporal intervals. Furthermore, targeted disruptions 

of the posterior parietal cortex using transcranial magnetic stimulation (TMS) result in 

selective impairments in processing spatial, temporal, and numerical magnitudes 

(Sandrini & Rusconi, 2009). For example, TMS applied to the right IPS interferes with 

spatial and numerical processing (Andres, Seron & Olivier, 2005; Cohen Kadosh et al., 

2007). In addition, studies on non-human primates – in particular, macaques – show that 

the areas equivalent to the human IPS are activated during the processing of temporal 

durations (Leon & Shadlen, 2003), numerical magnitudes (Sawamura, Shima & Tanji, 

2002) and spatial extents (Stein, 1989). Nevertheless, Tudusciuc and Nieder (2007) have 

found that specific neuronal populations in apes are responsive both to spatial and 

numerical magnitudes, which can be considered one of the most conclusive pieces of 

evidence for a shared magnitude processing (Winter et al., 2015). It is worth to mention 

that while ATOM claims that the processing of space, time and number is based on 

common cortical circuits, it does not mean that these circuits are restricted to one specific 

area of the brain. Although the magnitude system is primarily situated in the parietal 

cortex, it involves –presumably – a distributed network of cortical areas which are also 

connected to the prefrontal cortex (Bueti & Walsh, 2009). 

On the other hand, ATOM has been challenged by the idea that biases in 

magnitudes, particularly space and time, may be a result of the linguistic labels we assign 

to them and how we conceptualize these dimensions at a linguistic rather than at a 

perceptual level (Togoli et al., 2024). As we have seen in the previous paragraph, this 

concept is known as Metaphoric Structuring View (Casasanto & Boroditsky, 2008). For 

example, the above-mentioned STEARC effect is compatible with a conceptual metaphor 
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in which times are conceptualized as spatial locations (Lakoff & Johnson, 1999; Winter 

et al., 2015). In regard to this, alternative theories propose that magnitudes interact at a 

more cognitive level rather than at a perceptual one, as a response bias (Yates, Loetscher 

& Nicholls, 2012), or as a working memory interference (Cai et al., 2018). However, as 

mentioned above and as already proposed by Bueti and Walsh in 2009, recent 

neuroimaging data suggests that this interaction could derive from the processing of 

different dimensions in partially overlapping cortical maps, without necessarily involving 

a shared neural code (Harvey et al., 2015; Tsouli et al., 2022; Fortunato, Togoli & Bueti, 

2023; Togoli et al., 2024; Hendrikx et al., 2022, 2024). 

In conclusion, as far as we have seen both CMT and ATOM share a common 

explanatory target: the interaction between space, time, and number. Together, ATOM and 

CMT demonstrate how the interweaving of space, time and number in the human mind 

may create a framework that supports cognitive processes, from low-level perception to 

the development of complex concepts (for reviews, see Núñez & Cooperrider, 2013; 

Bender & Beller, 2014; Winter et al., 2015). Nonetheless, neither of the two theories 

suggests that the neural or mental representation of these domains is fully explained by 

their areas of overlap. Indeed, ATOM and CMT have been compared based on how much 

they predict <asymmetries= in cross-domain interactions – that is, whether one domain 

has a greater influence on another than the reverse. These asymmetries have to be further 

investigated: only a few scientific papers have begun to address the study of the neural 

mechanisms underlying these asymmetries (Gijssels et al., 2013) and to investigate this 

interaction in more depth (Reali, Lleras & Alviar, 2019; Nourouzi Mehlabani, 

Sabaghypour & Nazari, 2020). For now, we will focus on CMT and, in particular, on the 

neural correlation between spatial and linguistic processing. 
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1.3.3. Spatial Codes for Human Thinking 

Neuropsychological research on amnesic patients (Scoville & Milner, 1957; 

Kensinger & Giovanello, 2005) and recent neuroimaging experiments (Eichenbaum, 

2004) have shown that the hippocampal formation – including the proper hippocampus 

and surrounding cortices – is essential for memory formation and retrieval (Bottini & 

Doeller, 2020). However, along with the medial prefrontal cortex (mPFC), these brain 

regions also play a fundamental role in our ability to represent and navigate the physical 

environment (O9Keefe & Nadel, 1978; Viganò & Piazza, 2020).  

Two primary types of neurons are crucial for spatial navigation: place cells 

(O9Keefe & Dostrovksy, 1971) and grid cells (Hafting et al., 2005), as shown in Figure 

4. Place cells, located in the hippocampus, fire when an animal moves through a particular 

spot in its surroundings. In contrast, grid cells – in the entorhinal cortex (EC) – fire at 

multiple locations arranged in a distinct hexagonal grid that creates a map-like 

representation of the local environment. Notably, grid cell activity can be detected 

through the BOLD signal decoded from fMRI when participants navigate virtual reality 

environments (Viganò & Piazza, 2020). In a study by Doeller, Barry and Burgess (2010), 

participants navigated a virtual arena, collecting and repositioning objects. The 

researchers used fMRI to monitor the BOLD signal, which reflects changes in blood 

oxygenation and can therefore indicate neural activity, while spatial memory accuracy 

was assessed based on how closely objects were repositioned to their original locations. 

They focused on an anatomical region of interest, the EC, and analysed movements, 

direction and speed of the participants: the results revealed consistent activation of grid 
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cells in the right EC during fast movements, while the left EC exhibited similar but less 

reliable patterns. 

Together with other spatially tuned neurons in the hippocampal formation, place 

and grid cells are believed to form the navigation system of the brain (Moser, Rowland & 

Moser, 2015; Bush, Barry & Burgess, 2014; Bottini & Doeller, 2020). This navigation 

system also encompasses head direction cells conveying information about head direction 

in animals (Cullen & Taube, 2017), speed cells sensitive to running speed (Kropff et al., 

2015), goal and goal direction cells signalling egocentric directions to navigational goals 

(Hok et al., 2005; Sarel et al., 2017), and border (Savelli, Yoganarasimha & Knierim, 

2008; Solstad et al., 2008) or boundary vector cells (Lever et al., 2009) responding to 

borders in the environment. 

 

 

 

 

 

 

  

 

Figure 4. Firing of a grid cell (left) and a place cell (right) recorded from the rat hippocampus and entorhinal 
cortex, respectively (from Moser et al., 2015). In the upper panel, pike locations (red dots) are shown on 
the animal9s path (black line) through a square enclosure. In the lower panel, autocorrelation firing fields 
reveal the regular hexagonal field of grid cells (left) and the unique spatial field of place cells (right). 
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Grid-like activity has been observed not only within the hippocampal formation but 

also in cortical areas usually associated with conceptual representation and advanced 

cognition – such as the precuneus and, as we said before, the mPFC. The presence of grid 

cells in the entorhinal and medial prefrontal cortices, along with place cells in the 

hippocampus, has been validated through single-cell recordings in implanted epileptic 

patients (Jacobs et al., 2013; Ekstrom et al., 2003; Bottini & Doeller, 2020). Grid cells are 

also active during tasks with minimal resemblance to physical navigation, such as 

imagined spatial navigation (Horner et al., 2016; Bellmund et al., 2016), exploration of 

visual scenes (Nau, Julian & Doeller, 2018), and the processing of morphing visual 

objects (Constantinescu, O9Reilly & Behrens, 2016) and odours (Bao et al., 2019). 

Moreover, grid cells also contribute to encoding gaze location during free viewing of 

visual stimuli, a function observed in both humans (Nau et al., 2018; Julian et al., 2018) 

and primates (Killian, Jutras & Buffalo, 2012).  

The role of the hippocampal formation in spatial perception has also been evidenced 

by neuropsychological studies showing that amnesic patients with hippocampal damage 

struggle to recognize scenes more than faces, objects, or colours (Lee et al., 2005a). These 

patients exhibit notable impairments in processing multiple spatial relationships (Lee et 

al., 2005b) or in integrating information gathered from several fixations into a wholesome 

and coherent perception (Lee, Yeung & Barense, 2012; Erez, Lee & Barense, 2013). 

Altogether, the hippocampal formation, particularly the hippocampal-entorhinal system, 

seems to offer a world-centered and relational map of the surrounding environment 

(Doeller et al., 2010) and perceptual landscapes, supporting both navigation and visual 

exploration (Bottini & Doeller, 2020).  
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A recent proposal suggests that the same place- and grid-like organization is used 

to support internal representations (<cognitive maps=7) of nonspatial memories and 

experiences (Viganò & Piazza, 2020; Bottini & Doeller, 2020; Zheng et al., 2024). In a 

recent study, Aronov, Nevers and Tank (2017) trained rats to distinguish between different 

sound frequency levels in order to get little food rewards. The researchers showed how 

hippocampal place cells responded for specific frequencies, while grid cells in the EC 

responded to multiple frequencies (mirroring the role of place and grid cells in spatial 

environments, where place cells activate for specific locations and grid cells for multiple 

locations). Notably, in a follow-up experiment where rats navigated a physical enclosure, 

the very same cells activated by sound frequencies also fired for particular spatial 

locations. This demonstrates that place and grid cells are involved in encoding both spatial 

and non-spatial information.  

In addition, research shows that the hippocampal-entorhinal circuit can arrange 

nonspatial experiences into a metric and relational configuration, extended to several 

cognitive domains: statistical regularities of events (Garvert, Dolan & Behrens, 2017), 

their temporal duration and succession (Bellmund, Deuker & Doeller, 2019; Buzsáki & 

Tingley, 2018; Eichenbaum, 2014), concepts in abstract feature spaces (Theves, 

Fernandez & Doeller, 2019), the structure of episodes in complex narratives (Collin, 

Milivojevic & Doeller, 2015), the relationship between characters in social interactions 

(Tavares et al., 2015), and finally, semantic relationships (Solomon et al., 2019). 

Essentially, evidence indicates that nonspatial conceptual knowledge could be structured 

7 In 1948, Tolman collected evidence to demonstrate that rodents could create detailed maps of their 
surroundings, which would enable them to engage in flexible goal-directed behaviour, i.e. finding shortcuts. 
Tolman coined the term <cognitive map= and speculated how these maps could support several 
psychological functions (Bellmund et al., 2018).
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into low-dimensional cognitive maps, similar to the spatial representations used for 

navigating the physical world (Bellmund et al., 2018; Bottini & Doeller, 2020). 

In their paper, Bottini and Doeller (2020) highlight another aspect: the <curse of 

dimensionality=. As we know, objects in the physical world – just like concepts in our 

minds – vary widely along multiple dimensions (Binder et al., 2016; Borghesani & 

Piazza, 2017). To embrace this extensive variety of concepts, semantic memory might 

rely on high-dimensional representational spaces (Kriegeskorte & Kievit, 2013), where 

each concept is represented as a vector with coordinate values across the various 

dimensions that define that space. Indeed, high-dimensional geometries have been shown 

to predict neural activity associated with semantic processing (Binder et al., 2016; 

Fernandino et al., 2016), even allowing predictions at the single-item level (Pereira et al., 

2018). However, high-dimensional geometries are often impractical for organizing and 

manipulating relevant patterns in conceptual knowledge: accordingly, in some instances 

relevant similarities might be overlooked due to an overwhelming number of dimensions. 

This phenomenon, known as the <curse of dimensionality= (Ganguli & Sompolinsky, 

2012), is the reason why information becomes sparse, and patterns get lost as the number 

of high-dimensional spaces grows. For example, assessing a possible similarity between 

any animal and a cat is easy if we consider few traits, such as size or behaviour; however, 

it becomes nearly impossible if we take into account a dozen of different traits. Low-

dimensional topological configurations, such as cognitive maps and image spaces, reduce 

this complexity by focusing on fewer relevant dimensions: therefore, similarities and 

differences become clear, and patterns appear. For instance, to understand the analogy 

<my job is a jail=, we must ignore the numerous differences between jobs and jails and 

instead focus on similarities, such as lack of freedom or loneliness (Gentner, 1983). 
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Hence, low-dimensional cognitive maps might be essential to draw connections between 

seemingly unrelated experiences and objects (Gentner et al., 2001; Bottini & Doeller, 

2020). Moreover, low-dimensional image spaces can significantly support the formation 

of primary conceptual metaphors (Grady, 1997, 1999, 2005) that underlie several abstract 

domains – time, numbers, and emotions – on the basis of grounded sensorimotor 

experience (Lakoff & Johnson, 1999; Casasanto & Bottini, 2014; Bottini & Doeller, 

2020). For example, metaphors such as <You have a bright future in front of you= (time 

is space) illustrate intuitive metaphorical schemas rooted in spatial experience. These 

schemas often emerge from dimensions linked to spatial movement (such as I move 

through time while I move through space; Clark, 1973) or those that share a recognizable, 

iconic resemblance to sensorimotor experiences. Therefore, on the one hand, primary 

metaphors like <knowing is seeing=, <more is up=, and <bad is down= are effectively 

supported by image spaces due to their direct experiential correlations (Gibbs Jr, Lima & 

Francozo, 2004). On the other hand, more complex metaphors, such as <love is a journey= 

or <old age is like winter=, which require a multidimensional analogical structure, may 

depend on the additional use of cognitive maps to facilitate their understanding (Bottini 

& Doeller, 2020). Although the precise neural mechanisms responsible for these 

processes are not yet completely understood, an extensive body of research gives 

substantial evidence that the parahippocampal and inferior parietal areas are involved in 

the production and comprehension of new metaphors (Rapp, Mutschler & Erb, 2012; 

Benedek et al., 2014). As a matter of fact, both the hippocampus and the inferior parietal 

lobule seem to play a major role in relational thinking and transitive inference (Dusek & 

Eichenbaum, 1997; Waechter et al., 2013), which support the structure of analogical 

mapping (Gentner et al., 2001; Wendelken & Bunge, 2010; Bottini & Doeller, 2020).  
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In conclusion, investigating low-dimensional representational spaces within the 

hippocampal and parietal cortex could provide significant insights into the neural 

mechanisms underlying analogy and metaphor, thereby enhancing our understanding of 

these cognitive functions (Bottini & Doeller, 2020). Currently, we know that the brain 

creates distinct, parallel representations of different relational structures rather than 

combining them into one compositional map (Spiers, 2020). It is likely that these parallel 

representations of separable maps facilitate generalization and adaptation in dynamic 

environments where the relevance of stimulus dimensions can shift rapidly (Zheng et al., 

2024). These cognitive processes enable the hippocampus to flexibly adapt based on task 

demands (Garvert et al., 2023) and to direct focused behaviour in response to new 

challenges (Whittington et al., 2020; Zheng et al., 2024). Then, if the hippocampal-

entorhinal circuitry can represent abstract knowledge structures similarly to spatial 

environments, then semantic proximity (or similarity) might also be processed as spatial 

closeness. Fundamentally, this would mean that related concepts could be <mapped= 

closer together within this cognitive space, influencing our spatial perceptions. This 

observation is thoroughly consistent with findings from behavioural studies, such as those 

conducted by Casasanto (2008), which demonstrated that individuals frequently employ 

spatial language to describe conceptual relationships. Findings from Bellmund et al. 

(2018) further support this idea by demonstrating that the hippocampal formation 

organizes both spatial and non-spatial information in a structured manner. Based on these 

premises, we expect a reciprocal relationship: that is, not only does closeness influence 

our perception of similarity, but similarity also affects how we remember distances. This 

issue will be explored further in the next section. 
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1.4.  Similarity and Distance 

The significance of space for the representation of similarity is supported by a 

substantial body of evidence, particularly within the semantic domain. First and foremost, 

this relationship was studied by Casasanto (2008). In his study, participants were asked 

to rate the similarity of pairs of abstract nouns, faces and object pictures, which were 

displayed on a computer screen at different spatial distances (close, medium, or far apart). 

In particular, they were asked to evaluate the similarity of the items based on their 

meanings (for abstract nouns), their functional uses (for objects), or their visual 

characteristics (for both objects and faces). Stimuli appeared at each spatial distance the 

same number of times for all participants. The spatial location of the stimuli on the 

computer screen had a systematic impact on participants: indeed, their similarity ratings 

were affected by spatial proximity, although not always in line with the predictions of 

spatial metaphors in language. Specifically, when the participants made perceptual 

judgments about face pairs and object pictures (visual appearance), stimuli presented 

closer together were judged to be less similar than stimuli presented farther apart. 

Otherwise, when the participants made conceptual judgments about abstract nouns and 

object pictures, stimuli presented closer together were judged to be more similar than 

stimuli presented farther apart, consistent with predictions based on linguistic metaphors 

linking similarity to physical closeness (Lakoff & Johnson, 1999).  

Guerra and Knoeferle (2014) demonstrated that spatial distance between objects 

can modulate real-time semantic interpretation of abstract sentences. When noun pairs 

(such as joy and euphory) were displayed close together on a computer screen with a 

sentence that indicated similarity (<Joy and euphory are almost similar=), participants had 
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quicker reading times for the adjective (<similar=), compared to when the nouns were 

presented farther apart (Tuena et al., 2023). Conversely, when the noun pairs were 

displayed at a distance, reading times for the adjective were faster in sentences that 

expressed dissimilarity. Boot and Pecher (2010), instead, examined whether the distance 

between two coloured squares influenced performance in a colour similarity decision 

task. They found that participants reacted faster to similar-coloured squares when the 

squares were spatially close to each other, compared to when they were spatially far away 

from each other. Interestingly, participants also responded faster to dissimilar colours that 

were presented far than to those near each other. Such findings suggest that the 

relationship between similarity and proximity should be asymmetrical. However, these 

results contrast with those from Casasanto (2008) and Breaux and Feist (2008), who 

showed that stimuli were rated as less similar when presented close together compared to 

when they were further apart. This discrepancy might be due to the fact that Boot and 

Pecher (2010) presented a very clear distinction between similar and dissimilar stimuli; 

furthermore, in their study, participants were asked to respond with binary choices rather 

than using a scale. In another research, participants saw a scenario in which two 

characters were close to each other or far from each other in physical space (Winter & 

Matlock, 2013). In this experimental condition, they judged characters positioned close 

to each other in space to be more similar in political ideals: these results challenge the 

assumption of an asymmetrical relationship since they suggest a bidirectional mapping – 

that is, from source to target domain and from target to the source domain.  

As we have mentioned, the concept of asymmetry in metaphorical mappings seems 

to be consistent in literature: for instance, it has been confirmed that spatial information 

often influences temporal judgments, but time rarely affects spatial judgments (see 
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Boroditsky, 2000; see also Casasanto & Boroditsky, 2008), reflecting asymmetry in the 

metaphor <time is space=. Nonetheless, some findings corroborate the opposite idea: for 

example, perceiving numbers impacts spatial responses (<more is up= or <more is right=; 

Fischer et al., 2003), whereas emotional state (<happy is up=) influences vertical spatial 

perceptions (Meier & Robinson, 2004) and perceived room temperature (Zhong & 

Leonardelli, 2008). Moreover, Wang, Liu and Wang (2021) explored whether the spatial 

distance between words in the mental lexicon affects time perception. Participants were 

shown two words in succession and were asked to judge the temporal gap between them 

as either long or short. Word pairs varied in semantic or phonological similarity, 

representing either close or distant associations (Hillinger, 1980; Rouibah, Tiberghien & 

Lupker, 1999; Zhou & Marslen-Wilson, 2000). Using a temporal bisection task (Li et al., 

2021), participants were trained with <short= and <long= intervals before judging 

intermediate test intervals. They discovered that the perceived temporal distance between 

two successively presented words was shorter when the words were semantically or 

phonologically close in the mental lexicon, compared to when they were more distantly 

related. Hence, lexical proximity influences perceived temporal proximity: in their paper, 

Wang et al. (2021) refer to this phenomenon as the <lexical Kappa effect”, alluding to the 

original Kappa effect8 (Cohen, Hansel & Sylvester, 1953; Price-Williams, 1954).  

Further, indirect evidence for bidirectionality of <similarity is proximity= could be 

the <social distance is physical distance= metaphor, since social similarity is consistently 

related to social distance, and both are associated with physical distance (Christakis & 

Fowler, 2009; Winter & Matlock, 2013). In line with this claim, Matthews and Matlock 

8 This phenomenon occurs while presenting two short flashes in succession at different locations: if the 
spatial distance between the flashes is increased during the experimental session, people will perceive a 
longer temporal distance between the two flashes (Cohen et al., 1953; Price-Williams, 1954).
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(2011) demonstrated that when asked to draw paths on a map, people drew paths closer 

to characters labelled as <friends= than to characters described as <strangers=. 

One last perspective that does not emphasize asymmetry is Conceptual Integration 

Theory (Fauconnier & Turner, 1998; Turner & Fauconnier, 2002): in this approach 

metaphorical domains are seen as two input spaces that combine in a <blended= cognitive 

space rather than existing as distinct mappings. Nevertheless, <blending= is not capable 

of accounting for primary metaphors (see Grady, Oakley & Coulson, 1999) as they are 

deeply rooted, and their mappings have evolved from repeatedly perceiving 

environmental correlations in the world (Winter & Matlock, 2013). In this regard, 

Kövecses (2013) argues that these metaphors might be better understood as metonymies 

(<proximity for similarity=); thus, language that refers to proximity can be seen as a way 

to metonymically refer to similarity within the same domain (Winter & Matlock, 2013). 

So far, the most compelling evidence was given by Pauels and colleagues (2023). 

In their paper, the researchers presented six studies in which they investigated the 

relationship between the <similarity is proximity= metaphor and spatial bias. In all studies, 

participants were shown two objects of the same category (two dogs or two food items) 

that differed in similarity, judged how similar these objects were to one another, and then 

indicated where they thought the objects had been located when they saw them. Overall, 

their findings show that perceived similarity reliably influences how people remember 

spatial distances between stimuli and speak in favour of a reciprocal relationship between 

distance and similarity. These lines of research suggest an intricate relationship between 

judgments of similarity and distance with potential implications for spatial thinking 

(Pauels et al., 2023).  
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On these grounds, we aim to demonstrate that semantic cues can influence spatial 

perception, gathering further evidence for a bidirectional relationship between semantic 

similarity and perceived spatial proximity. Specifically, we hypothesize that the distance 

between words will be perceived as shorter in a semantically close condition (e.g., <doctor 

– physician=) than in a semantically distant condition (e.g., <doctor – dog=), suggesting 

that semantic similarity between the two words can <compress= the perception of space. 

To accomplish this, DSMs will be implemented to calculate the semantic similarity 

between the words used. All linguistic stimuli collected for our experiment are sourced 

from the Italian databases provided by Montefinese and colleagues (2014) and by 

Crepaldi and colleagues (2015), which are called, respectively: ANEW (Affective Norms 

for English Words) and SUBTLEX-it, both available in the OSF repository. 

In the experimental task of the current study, participants will be asked to judge the 

spatial distance between pairs of words manipulated along two specific dimensions: 

semantic similarity (i.e., similar and dissimilar words) and spatial distance (i.e., words 

positioned at different distances on the computer screen). After presenting each pair of 

nouns, participants will indicate whether they perceive the spatial distance between the 

words as <short= or <long=, similarly to the aforementioned study by Wang et al. (2021). 

Materials and methods will be explained in detail in the second chapter of this work. 
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2. Materials and Methods 

2.1. Participants 

For this study, the participants involved were 68 (specifically, 53 females and 15 

males) ranging from 20 to 32 years of age [mean age (SD) = 23.60 ± 2.44 years]. Sample 

size was determined a priori based on Brysbaert and Stevens9 (2018) indication that, in 

order to achieve properly power, an experiment should have at least 1.600 observations 

per cell of the design (i.e., per condition tested), that is at least 40 stimuli for 40 

participants. Participants were recruited via institutional email advertisements and via 

social media. All participants were native Italian speakers, with normal or corrected-to-

normal vision and were naive to the purpose of the study. In addition, no previous history 

of learning disorders was recorded. For the current study, each participant was assigned a 

unique subject code to ensure anonymity during data collection and analysis. All 

participants provided informed consent before participating in the study. Finally, the study 

protocol was approved by the ethical committee of the University of Pavia (Department 

of Brain and Behavioural Sciences) and all participants were treated in accordance with 

the guidelines outlined in the Declaration of Helsinki. 
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2.2.  Distributional Semantic Model 

 

The DSM we used here was fastText, originally proposed by Schütze in 1993 and 

realized computationally by Joulin and colleagues (2016) and Bojanowski and colleagues 

(2017). Words and pseudowords vectors were retrieved from the Italian pre-trained 

vectors (Grave et al., 2018). To do this, we relied on a pre-trained fastText model 

(specifically for the Italian language), which is called <wiki.it.bin=: the model was trained 

using the Continuous Bag of Words (CBoW) method, an approach originally proposed 

by Mikolov and colleagues (2013a), with 300 dimensional vectors, character n-grams of 

up to length 5, and a window of size 5. The model was trained on the Italian Wikipedia 

corpus with 730.748.126 tokens (hence <wiki.it= in the name). 

When using CBoW, the obtained vector dimensions capture the extent to which a 

target element is reliably predicted by the linguistic contexts in which it appears, where 

<context= is represented as the words contained in a fixed size window around the target 

word (Gatti, Marelli & Rinaldi, 2023; Anceresi et al., 2024). Specifically, the CBoW 

model will induce a representation for a given target w0 based on context words: 

�−�, . . . , �−1, �1, . . . , �� 
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2.3.  Stimuli 

 

We selected 210 two-syllable words (with five letters) for the experiment, paired 

together into 100 pairs. The remaining 10 words were paired with a pseudoword, that is, 

a made-up term that follows the phonological and morphological rules of a language 

(Stark & McClelland, 2000; Arndt, Lee & Flora, 2008). The 10 pseudowords used were 

also composed of five letters and were all readable. These couples constituted the filler 

items and were used to assess the attention of the participants during the experimental 

task: hence, if participants were actually reading the stimuli. Stimuli were additionally 

balanced for valence, arousal, frequency and Levenshtein distance (LD; Levenshtein, 

1996). Additionally, each letter string, whether a word or a pseudoword, appeared only 

once in the entire set of stimuli.  

 We selected words from the ANEW Italian database by Montefinese and colleagues 

(2014), developed from translations of the 1.034 English words present in the Affective 

Norms for English Words (Bradley & Lang, 1999) and from words selected from Italian 

semantic norms (Montefinese et al., 2013). In this dataset, all the words were rated 

according to six measures (valence, arousal, dominance, familiarity, imageability, and 

concreteness). For the purpose of this study, we considered only valence and arousal 

ratings. We then selected another dataset containing additional words, the SUBTLEX-it 

(Crepaldi et al., 2015), an Italian word frequency database created by analyzing movie 

subtitles. The reason we chose SUBTLEX-it is that it contains a much larger number of 

words, offering a broader range of possibilities for matching in terms of word length, 

frequency, and LD. This measure is often referred to as <edit distance= and can be defined 

as the minimum cost of transforming one string into another through a sequence of 
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weighted edit operations (Yujian & Bo, 2007). For instance, the LD between the words 

cat and bat is 1 because it would take one letter (c instead of b) to transform cat into bat. 

Alternatively, the LD between kitten and smitten is 2 because it involves one substitution 

(m instead of k) and one insertion at the beginning of the word (s). 

All the analyses were performed with R-Studio (RStudio Team, 2015). At first, we 

developed a script by taking into account only valence and arousal values for our 

linguistic stimuli. As mentioned above, we extracted 300-word vectors from the ANEW 

dataset loading a pre-trained fastText model (<wiki.it.bin=). We estimated two linear 

model formulas (form_val and form_aro) where the 300-dimensional word vectors were 

used as predictors for both valence and arousal. Our aim was to determine whether these 

numerical representations generated by fastText could accurately predict valence and 

arousal: the results showed that these vectors successfully predicted both dimensions.  

To further validate the models, we employed a <Leave-One-Out= (LOO) cross-

validation method. This approach ensured that our predictive models for valence and 

arousal were not simply memorizing the data but were evaluated based on how well they 

generalized to new words. Since the model was trained on nearly the entire dataset in each 

iteration (just one word was left out), we could examine how well the model performed 

on each specific instance. For example, if the model can accurately predict the valence 

and arousal for a left-out word, it indicates that the word vectors contain meaningful 

information about these dimensions. In contrast, if the model struggles to make accurate 

predictions for a left-out word, it may indicate that the vector does not capture sufficient 

information or that the model fails to learn the relationship between the vectors and the 

associated ratings. Consequently, the word vectors were merged with the original ANEW 

database, creating a unified dataset. 
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Afterwards, we prepared another data frame containing the additional Italian words 

taken from the SUBTLEX-it dataset. An <anti-join= operation was performed to exclude 

words that had already been evaluated in the ANEW, ensuring that only new words were 

analysed. In the script, a linear model was executed for each word in a loop, processing 

one word at a time. After each iteration, the results were combined using the rbind 

function to create a cumulative data set. Once all words were processed, we calculated 

the cosine distance between words: the cosine is typically taken as a proxy for semantic 

similarity (Günther et al., 2019a). The higher the cosine value, the more semantically 

related the words are expected to be.  

We then focused on balancing pairs of words to form both related and unrelated 

couples. These pairs were carefully balanced according to different factors: word 

frequency, emotional dimensions such as arousal and valence, and the Levenshtein 

distance. In particular, by setting LD > 1, we guaranteed that the words in each pair were 

sufficiently different, requiring at least two-character edits (insertions, deletions, or 

substitutions) to transform one word into the other. Finally, we created 200 different Excel 

files containing related, unrelated, and filler words, already randomized and ready to be 

used for the experimental task. 
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2.4.  Experimental Design and Procedure 

 

The experiment was programmed and executed using PsychoPy (Peirce, 2007, 

2009; Peirce & MacAskill, 2018; Peirce et al., 2019), a Python-based software for the 

creation of experiments in behavioural science (psychology, neuroscience, linguistics) 

with precise spatial control and timing of stimuli. The experimental task was conducted 

through the Pavlovia platform, created for the wide community of researchers in the 

behavioural sciences to run, share, and explore experiments online. Participants were 

required to use the Google Chrome browser, ensuring compatibility with PsychoPy 

running on Pavlovia. After agreeing to the informed consent, participants went through 

the experimental condition in the same session. Upon accessing the experiment link, 

participants were presented with a digital form to input their unique subject code. Before 

starting, participants were given on-screen instructions that explained the task 

requirements. 

 

2.4.1. Explicit Spatial Judgment Task 

This study employed an explicit spatial judgement task to examine the perceived 

spatial distance between pairs of words manipulated along two specific dimensions: 

semantic similarity (similar and dissimilar words) and spatial distance (words positioned 

at different distances on the computer screen). This task included a training phase 

followed by a testing phase. In the training phase, participants were initially exposed to 

two anchors: a <short= standard and a <long= standard (from 0.1 to 0.5 normalised display 

units). Specifically, the units represent percentages of the screen space, meaning the actual 
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physical distance depends on the size of the display being used. For all units, the centre 

of the screen is represented by coordinates (0,0), negative values mean down/left, positive 

values mean up/right. In normalized units, the display window ranges from -1 to +1 along 

both the x and y axes; thus, the top-right corner of the window has coordinates (1,1), and 

the bottom-left corner has coordinates (-1,-1)9. This configuration aimed to prevent 

participants from focusing excessively on the center of the screen when making spatial 

judgments. Participants practiced categorizing distances as either <short= or <long= based 

on the anchor distances, ensuring they could distinguish between the two standards. This 

phase was important to ensure that participants understood the task requirements before 

proceeding to the main experiment. In the testing phase, each trial began with a fixation 

(+) at the center of the screen for 500 ms, followed by a blank screen for 500 ms. After 

that, two words were successively presented at different spatial distances (0.1, 0.2, 0.3, 

0.4 and 0.5 display units) for 1500 ms (see Figure 5). All the selected word pairs appeared 

on the screen aligned along the vertical axis. 

Participants were asked to judge whether the spatial distance between the pairs of 

words was closer to the <long= or <short= anchor interval, pressing the <A= key on the 

keyboard for the <short= distance and the <L= key for the long distance. Following the 

main spatial judgement task, an attention trial was included: in this condition, one of the 

two presented words in the couple was a pseudoword. This trial was a control measure 

used to assess the attention of the participants to the words, verifying that they were 

genuinely reading and understanding their meaning rather than merely calculating the 

9 Note that setting a stimulus height to 1.0 would represent half the window9s height, rather than the full 
height, as the total range in height is 2 (from -1 to +1). Additionally, specifying equal values for width and 
height does not necessarily produce a square stimulus unless the display window itself is square. For 
example, on a 1024x768 window, a stimulus with size parameters (0.75,1) would result in a square due to 
the aspect ratio of the window.
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spatial distance between them. Whenever the participants saw the pseudoword, they were 

required to press the spacebar instead of the two previously indicated keys. Therefore, as 

previously stated, the stimuli were 210 two-syllable words, with 10 additional pairs of 

real words and pseudowords serving as fillers, for a total of 110 trials. Trial order was 

randomized across participants. 

Figure 5. Schematic representation of the trial structure for the experiment (long distance). The font used 
for the task was Courier New: in all the pairs, each letter filled the same space on the screen. 
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2.5.  Data Analysis 

Data were collected using PsychoPy and exported as CSV files. Data cleaning, 

preprocessing, and final analysis were conducted using RStudio (R-Studio Team, 2015). 

Generalized linear mixed models (Cox, 1958; Knoblauch & Maloney, 2012) – henceforth, 

GLMMs – were run using the lme4 R package (Bates et al., 2015; Kuznetsova, Brockhoff 

& Christensen, 2015). Our dependent variables were the correct responses given by the 

participants, which were analyzed using GLMMs fitted on a binomial family distribution 

(<short= answers were computed as 1 and <long= answers as 0), while type (related, 

unrelated) was our categorical predictor, with participants and trials set as random 

intercepts. The experimental pipeline consisted of several steps.  

In the initial data processing, we imported the CSV files on RStudio and used a for 

loop to merge each file into a single, comprehensive master data frame. We isolated the 

catch trials, that is, the specific trials we implemented in the experiment to assess the 

attention of the participants to the stimuli. In these attention trials, participants were 

instructed to press the spacebar: consequently, we checked whether they followed this 

instruction or not. We calculated the average accuracy for each participant by assessing 

the proportion of correctly completed catch trials. Participants who demonstrated an 

accuracy below 60% on these trials were considered inattentive, and the script filtered 

them out, leaving only participants who passed this threshold. This resulted in the removal 

of data from 8 participants. After the dataset was filtered to keep only those participants 

who demonstrated high accuracy on the catch trials, we removed all the fillers from the 

dataset in order to focus on the meaningful results. Moreover, we filtered out any cases 

where the response column contained unexpected key presses, retaining only entries 
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where responses were either <a= or <l=. We encoded the <a= response as 0 (indicating a 

<short= response) and <l= as 1 (indicating a <long= response). This step was crucial to 

ensure that subsequent analyses could accurately identify the different types of responses 

from participants. 

Mean accuracy was calculated for each participant. For <short= responses, if the 

response was <a= and the distance value was less than 0.25, the accuracy was coded as 1 

(correct); otherwise, it was marked as 0 (incorrect). Similarly, for <long= responses, if the 

response was <l= and the distance was greater than 0.35, the accuracy was 1; otherwise, 

it was set to 0. At this point, using the ddply function (contained in the plyr package), the 

dataset was filtered in order to exclude all instances where the distance (dist) was equal 

to 0.3. Participants with an average accuracy greater than 0.70 were retained in a subset. 

In contrast, those with an average accuracy below 0.69 were stored in a different subset, 

indicating a reduction in the participant pool from 60 to 56 individuals. 

Finally, using the lme4 R package, we estimated a GLMM. Specifically, in the lme4 

syntax the model estimated was:  

ÿþĀ� ~ ā��þ +  (1|��) + (1|āÿ���) 

To prepare for the GLMM analysis, the variables ID (participant identity) and trial (each 

specific trial in the experiment) were converted into factors. This allowed for their 

inclusion as random intercepts in the subsequent statistical models, accounting for 

individual differences among participants and potential variations across trials. In the next 

section, we report the results of this estimated model.  
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3.  Results 

 

 In the current study, a GLMM was employed using the glmer function to analyze 

the data. The model consisted of 1.030 observations with the dependent variable resp 

representing the type of response provided by participants. The independent variable type 

was included as a fixed effect (thus, it was expected to influence the resp variable).  

 In the first place, Table 1 shows that distance (dist) significantly predicted correct 

<long= response probability, confirming that the task worked as intended in detecting 

distance-related effects. In particular, the coefficient for the dist variable (32.83644) 

indicates that for each one-unit increase in the distance between words, the estimated log-

odds10 of the response variable being in the 1 category (<long=) increased by 

approximately 32.83644 units. In simpler terms, as the spatial distance between words 

grows, the probability of a <short= response decreases, while the likelihood of a <long= 

response significantly increases. This relationship is visually clear in Figure 6, where the 

logistic curve shows the typical S-shape of binary response data. The curve reflects a 

sharp transition from <short= to <long= judgments around a certain distance, with 

participants making confident <short= judgments at low distances and vice versa. 

Table 1. Fixed Effect Table revealed by the GLMM and their p-values. 

Fixed Effect Estimate Standard Error z-value p-value 

(Intercept) -8.46189 0.48034 -17.61662 <0.00001 

Distance (dist) 32.83644 1.31245 25.01918 <0.00001 

10 Log-odds are the logarithm of the odds of an event occurring, used in statistics to express probabilities in 
logistic regression, where positive values indicate a higher likelihood of the event and negative values 
indicate a lower likelihood (Norton & Dowd, 2018).  
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Figure 6. Positive relationship between distance and <long= judgments in participants. 

However, while showing some positive trend (as we can see in Figure 8), the 

variable type does not reach statistical significance in this model. An analysis of variance 

for deviance tests11 (Nelder & Wedderburn, 1972) was conducted to evaluate the 

significance of type in predicting the response variable. The Chi-squared value for type is 

2.5 with 1 degree of freedom (p = 0.11). This p-value is above the conventional 

significance level of 0.05, indicating that type is not statistically significant at the 5% 

level. Nevertheless, it is worth noting that it is relatively close to this threshold, suggesting 

a potential trend towards significance. Hence, although not statistically significant, it 

might warrant further investigation with an alternative trials structure to determine 

whether this trend could become significant under different conditions. 

11 Deviance serves as a measure of how well the model fits the data; lower values indicate a better fit. 
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Figure 7. The plot shows a slight increase in resp between the related and unrelated conditions, suggesting 
that participants may have perceived a slight difference in spatial distance based on the semantic similarity 
of the words, but this difference is not significant (p = 0.11).  

  

 As additional check, we ran a GLMM to analyze how the variables distance (dist_f) 

and type (related/unrelated) affected the response (resp) variable. In this case, the lme4 

syntax of the estimated model was:  

ÿþĀ� ~ ý�Āā_ÿ ∗  ā��þ +  (1 | ��) 

This model predicts response as a function of distance, type, and their interaction, while 

(1 | ID) specifies a random effect with an intercept for each level of ID, allowing for 

individual variations in the model. As shown in Figure 8, at a distance of 0.3 (regardless 

of whether the word pairs are related or unrelated), participants tend to choose the <long= 

condition over the <short= one. This observation suggests that the <short= anchor in the 

task could be so pronounced that, when in doubt, participants are inclined to respond with 
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the <long= condition. Consequently, the task appears to be unbalanced in terms of stimulus 

presentation, leading to a bias toward the <long= condition.  

Figure 8. Graphical representation of the interaction model resp ∼ dist_f∗type + (1∣ID). As distance 
increases, particularly at 0.3, there is a noticeable bias toward the <long= condition. 

 

Given the psychophysical nature of this task, it is worth noting that we additionally 

estimated the Point of Subjective Equality (henceforth, PSE) for each participant as a 

further measure of response accuracy. The PSE represents the point at which participants 

perceive two stimulus intensities as subjectively equivalent, or ambiguous, with a 50% 

probability of choosing either response. To estimate the PSE, we fit a psychometric curve 

using the quickpsy function, which models the relationship between stimulus intensity 

and response probability across conditions. Additionally, the model calculates a slope 

parameter, which can be used to derive the Just Noticeable Difference (JND), a measure 

of sensitivity to changes in stimulus intensity (Moscatelli, Mezzetti & Lacquaniti, 2012). 
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To ensure the reliability of our findings, we calculated the mean and standard deviation 

(SD) of PSE values within each participant and condition, and we then filtered out 

participants whose PSE values deviated more than 2 SDs from the mean. Figure 9 shows 

the plot of the fitted psychometric curves across conditions and participants. This cleaning 

procedure led to participant exclusion outcomes which closely aligned with those 

described in the previous method. Note that the psychometric curve was fitted solely as 

an additional check on participant performance. Indeed, due to the imbalances previously 

mentioned, the data showed a response bias that limited the precision of a PSE-based 

analysis. Therefore, we chose not to pursue this approach further and opted for the 

GLMM analysis instead. 

Figure 9. Point of Subjective Equality (PSE) for each participant in the related and unrelated conditions. 
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4.  Discussion 

In the present study, we gathered a sample of sixty-eight participants to investigate 

whether semantic similarity could influence the accuracy of remembered distance. In 

particular, we hypothesized that spatial distance between words would be perceived as 

shorter for semantically related pairs compared to unrelated pairs. Our research demand 

was initially inspired by Casasanto (2008), who demonstrated in a series of behavioural 

studies that spatial proximity could affect similarity judgments. Besides his findings, prior 

research has explored the impact of distance on perceived similarity (Winter & Matlock, 

2013), as well as its effects on choice (Boot & Pecher, 2010; Schneider et al., 2020) and 

categorization (Lakens et al., 2011; Schneider & Mattes, 2022). Conversely, we were 

interested in whether an abstract information, such as semantic similarity, could influence 

the perception of a more concrete attribute, such as spatial distance. Supported by positive 

results in literature (see Pauels et al., 2023) which proved that perceived similarity can 

reliably shape spatial memory, we took advantage of a DSM to explore this potential 

reciprocal relationship.  

To begin with, semantic similarity is central to many fundamental processes in 

human cognition, such as categorization (Nosofsky, 1986; Hampton, 1998), memory 

recall and recognition (Baddeley, 1966; Montefinese, Zannino & Ambrosini, 2015), and 

language processing (Raveh, 2002; Wingfield & Connell, 2023). Consequently, the study 

of semantic similarity is indelibly connected to theories of conceptual processing and 

representation. For instance, theories that organize the conceptual system as a taxonomic 

hierarchy (see Collins & Quillian, 1969) often derive measures of semantic similarity 

from distance metrics within hierarchical databases (Wingfield & Connell, 2023). By 



57 

contrast, according to the distributional hypothesis (Firth, 1957; Harris, 1954), linguistic 

distributional measures of semantic similarity can be obtained by extracting statistical 

patterns from large natural language corpora, as seen in Latent Semantic Analysis 

(Landauer & Dumais, 1997) and the Continuous Bag of Words approach (Mikolov et al., 

2013a). Finally, within a grounded cognition framework (Barsalou, 1999; Connell & 

Lynott, 2014), it is plausible to assume that similarity between concepts corresponds to 

similarity in sensorimotor experiences. However, embodied and distributional accounts 

of semantic memory have traditionally been seen as opposing views, largely due to the 

fact that DSMs rely solely on linguistic input without incorporating sensorimotor 

experience (Glenberg & Robertson, 2000; Glenberg & Kaschak, 2002; Borghesani & 

Piazza, 2017; Munoz-Rubke, Kafadar & James, 2018; Sadoski, 2018; Günther et al., 

2019a). This contrast may also be due to limited cross-disciplinary communication, which 

has constrained opportunities to integrate insights from both approaches (Davis & Yee, 

2021). Nonetheless, they are not fundamentally distinct, as both rely on mechanisms that 

process and integrate associations over time.  

As a matter of fact, Andrews and colleagues (2009) effectively demonstrated the 

potential of combining linguistic and embodied data by integrating both types in a unified 

model, creating a joint distribution of linguistic and perceptual feature-based data (also 

see Steyvers, 2010; Davis & Yee, 2021). The resulting semantic representations matched 

human behaviour better than those created using each data type independently: hence, the 

interaction between sensorimotor and linguistic data seems to be rather crucial for 

developing more human-like semantic knowledge (Andrews et al., 2009; Louwerse & 

Zwaan, 2009; Louwerse, 2011). In particular, this model can essentially perform 

inference, a crucial feature to the <grounding problem= for words encountered purely 
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through language. For instance, if we have substantial sensorimotor experience with 

coffee – and we know it as typically dark-coloured, hot, and often served in a mug – we 

develop a grounded representation of coffee. If the word <coffee= and <tea= happen to 

occur in similar contexts, the model can then infer and assign attributes to <tea= based on 

its association with the already grounded representation of coffee, even without direct 

experience with tea (Davis & Yee, 2021). More recent efforts in hybrid computational 

modelling have made this inference process more explicit (Hoffman, McClelland & 

Lambon Ralph, 2018). For example, Johns and Jones (2012) designed a global memory 

model that integrates linguistic distributional data (word co-occurrence vectors from large 

text corpora) with proxies for sensory-perceptual data, such as feature norms (Vinson & 

Vigliocco, 2008) and modality exclusivity norms (Lynott & Connell, 2009). In this 

context, the linguistic model faces a limitation: that is, not every word in the linguistic 

corpus has an associated sensory-perceptual representation. Therefore, the model infers 

sensory-perceptual qualities for words based on their similarity to words with established 

perceptual information: in this way, more abstract concepts can acquire sensory-

perceptual associations (Davis & Yee, 2021).  

Building on these developments, evidence from a growing number of studies 

converges in suggesting that perception is affected by language, further emphasizing our 

previous points: in the symbol-interdependency hypothesis12, Louwerse and Zwaan 

(2009) posit that language and sensorimotor experience are inherently intertwined, 

suggesting that linguistic data alone can encode considerable information about the 

physical world. In some of their studies, they demonstrated that distributional vectors 

12 The symbol-interdependency hypothesis is not a new concept; it draws directly from Deacon9s (1998) 
hierarchy of signs, which itself is rooted in Peirce9s (1923) foundational theories of semiotics. 
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contain surprising amounts of real-world information. For instance, when city names are 

represented through distributional vectors, their spatial relationships in a model 

correspond to their actual geographic locations (Louwerse & Zwaan, 2009; Recchia & 

Louwerse, 2016), and even hold true within fictional worlds such as Middle-earth from 

The Lord of the Rings (Louwerse & Benesh, 2012; Günther et al., 2019a). Moreover, it 

has been demonstrated that distributional vectors can represent a large range of 

sensorimotor information: indeed, these vectors capture the vertical location of objects in 

the world (Hutchinson & Louwerse, 2013), different perceptual modalities (such as 

visual, auditory, olfactory, gustatory, and haptic; Louwerse & Connell, 2011), and 

affective dimensions (including dominance, valence, and arousal; Hollis & Westbury, 

2016). That is to say, distributional models are able to capture enough world structure to 

mimic some aspects of embodied knowledge, albeit not comprehensively. 

As previously discussed in the Spatial Codes for Human Thinking section, the 

cognitive map theory (Tolman, 1948; O9Keefe & Nadel, 1978) and more recent theories 

(Behrens et al., 2018; Bellmund et al., 2018; Bottini & Doeller, 2020; Stoewer et al., 2022, 

2023) propose that the brain mechanisms responsible for spatial orientation in mammals 

can also be engaged to represent more abstract conceptual spaces, suggesting that spatial 

and nonspatial knowledge might share common representational systems (Viganò et al., 

2024). An explanatory framework can be described as follows: highly processed sensory 

information from our sensory organs is directed to the hippocampal-entorhinal complex, 

which supports spatial navigation and forms cognitive maps of the environment (O9Keefe 

& Dostrovksy, 1971). Within this complex, information is contextualized and associated 

with past experiences (Opitz, 2014). Grid and place cells generate map-like codes, which 

are suggested to contribute to these cognitive maps, thereby supporting the processing of 
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memories, emotions, and navigation (Stoewer et al., 2022). In line with embodied theories 

of cognition, this perspective gives priority to the perceptual and motor origins of 

cognitive maps (Barsalou, 2008; Gallese & Lakoff, 2005). Nevertheless, as discussed 

above, additional evidence suggests that the development of cognitive maps may not 

depend solely on specialized spatial computations (Friedman & Brown, 2000; Friedman 

& Montello, 2006; Louwerse & Zwaan, 2009; Louwerse, 2018; Gatti et al., 2022). First 

of all, experimental evidence has already demonstrated that the hippocampal-entorhinal 

complex is involved in language processing (Covington & Duff, 2016; Piai et al., 

2016). In the second place, Shrager, Kirwan and Squire (2008) demonstrated that patients 

with lesions in the hippocampal and entorhinal cortex could accurately track reference 

locations and estimate distances, performing in a similar way to healthy controls. 

Although this study used short paths, which could be retained in working memory, this 

evidence challenges the view that spatial computations are entirely responsible for 

developing mental representations of the environment (Gatti et al., 2024). 

In light of these considerations, it is plausible that both perceptual and linguistic 

experiences contribute to the formation of cognitive maps13. Moreover, we know that 

studies exploiting Distributional Semantic Models have shown that spatial information 

can be inferred from the statistical structure of natural language (Louwerse, 2018; Rinaldi 

& Marelli, 2020; Gatti et al., 2022, 2024). If this were the case, then language should 

influence our perception of space in the same way that space influences our perception of 

words. In particular, concepts that are semantically similar could be mentally represented 

13 It is crucial to mention that the extent to which linguistic and perceptual information contributes to this 
process depends on several factors, including the experimental task, the type of stimuli, and the domain 
assessed (Louwerse et al., 2015; Gatti et al., 2022).  
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as being <closer= together within an abstract cognitive space, which could influence our 

perception, our memory of physical distances and the relationships between 

concepts. Casasanto (2008) was one of the first researchers to provide evidence of this 

connection through behavioural studies, demonstrating that people often use spatial 

language to describe abstract relationships (<close friends= or <distant relatives=). Then, 

Pauels and colleagues (2023) demonstrated that similarity influences distance memory, 

as in the case for many conceptual metaphors.  

Here, we exploited a distributional semantic model – specifically, fastText – to 

further investigate the possibility of a bidirectional relationship between semantic 

similarity and perceived spatial distance. Despite the inherent limitations of our task 

outlined in the previous section, the results showed a slight trend: indeed, participants 

tended to choose the <short= anchor when the proposed word pairs were semantically 

close. However, the Chi-squared value for the variable type (whether word pairs were 

semantically related or unrelated) was 2.5 with 1 degree of freedom (p = 0.11), which is 

above the commonly accepted p-value of 0.05. Given this proximity to the conventional 

significance threshold, it is worth considering the possibility that under a modified 

experimental structure, the trend observed in this analysis might become significant.  

In addition to the primary analysis, a GLMM was employed to further examine how 

distance and type affected the response variable: the model showed a tendency for 

participants to favour the <long= condition at a distance of 0.3, regardless of whether the 

word pairs were related or unrelated. At this point, it becomes evident how the <short= 

anchor in the task was overly pronounced, leading participants to gravitate toward the 

<long= condition in cases of uncertainty. Similarly to Boot and Pecher (2010), this 

outcome highlights a flaw in the task design: in their study, in fact, the very clear 
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distinction between similar and dissimilar stimuli might have made the task more 

straightforward for the participants.  

Furthermore, as we can see in Figure 9, some of our participants appear to have not 

fully understood the instructions of the task: this misunderstanding led to inconsistent or 

unexpected responses, affecting the overall validity of our data. The direction of the 

psychometric curve provides a critical insight as it reflects how participants are 

interpreting the intensity of the stimuli: in this specific case, it is a crucial indication that 

some of our participants (for instance, 35, 59 or 66) were perceiving or responding in a 

opposite manner to what was intended by the experimental design. Despite the data 

cleaning procedures we applied, the complex instructions of the task and the imbalance 

in the stimuli may have influenced the performance of the entire sample, not just that of 

the participants excluded after data cleaning. Therefore, it is important to consider that 

the performance we observed in the current study might not be entirely representative of 

how participants would respond under more controlled or optimized conditions.  

In summary, our findings could be considered as preliminary data, supporting 

further research on the bidirectional association between spatial perception and semantic 

similarity. In particular, the dominant perspectives aligned with embodied accounts of 

cognition (Barsalou, 2008; Gallese & Lakoff, 2005; Gatti et al., 2024) should be 

challenged by future research, since we have significant evidence that language and 

sensory experience are not separate entities (Louwerse & Zwaan, 2009) and that similarity 

not only reflects our abstract understanding of the world, but also has direct implications 

for our spatial perception (Pauels et al., 2023). 
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5.  Conclusion 

In this study, we explored whether semantic similarity between words could 

influence perceived spatial distance, hypothesizing that semantic similarity could 

<compress= the perception of space. Although the results of the current study show only 

a subtle trend, this minor evidence is coherent with theoretical views which suggest that 

linguistic and perceptual experiences work together in shaping mental representations 

(Louwerse, 2018) and is consistent with recent behavioural insights by Pauels and 

colleagues (2023). Moreover, this trend is also in line with previous research by von 

Hecker, Hahn and Rollings (2016), which showed that when two elements appear more 

coherent or logically related, they are perceived and judged as closer in space.  

On the one hand, the theoretical basis of this study included the Conceptual 

Metaphor Theory, which proposes that abstract ideas are grounded in more basic, 

sensorimotor experiences (Lakoff & Johnson, 1999), a concept also highlighted in A 

Theory of Magnitude (Walsh, 2003; Bueti & Walsh, 2009). However, the semantic 

distance of words is not a magnitude in the same sense as physical stimuli: then, if the 

perception of spatial distance can be distorted by semantic similarity, this effect cannot 

be explained by ATOM. In this regard, Louwerse (2007, 2011) offers an alternative 

perspective with the symbol-interdependency hypothesis, which argues that perceptual 

relationships are encoded within the language system. Two decades ago, Barsalou (1999) 

predicted that <whatever approach ultimately does succeed will similarly attempt to 

integrate representation, statistical processing, and embodiment= (p. 652), while 

Landauer and Dumais (1997) stated that <the same process [of higher-order co-

occurrences] would presumably be used to reach agreement on similarities between 
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words and perceptual inputs and between perceptual inputs and each other= (p. 215; 

Louwerse, 2018). Today, an integrated perspective on symbolic and embodied cognition 

has gained considerable support (Louwerse, 2007; Barsalou et al., 2008; Andrews et al., 

2009; Bruni, Tran & Baroni, 2014), challenging traditional views which favour 

specialized spatial computations (Bellmund et al., 2018; Bottini & Doeller, 2020; 

Derdikman & Moser, 2010). 

On the other hand, our empirical basis draws from several research: notably, we 

mention a study by Casasanto (2008), which showed that when items are semantically or 

conceptually close (whether in meaning or usage), people often perceive them as 

physically closer, albeit spatially separated. Other studies, such as those by Boot and 

Pecher (2010) and Winter and Matlock (2013), suggested a possible bidirectional 

association between similarity and proximity. Pauels and colleagues (2023) further 

supported this reciprocal relationship, demonstrating that perceived similarity shapes 

memory for spatial distance.  

In conclusion, despite its limitations, this work contributes to the growing 

understanding of how language and perceptual experiences interact to shape cognitive 

representations of space. Future research should address these limitations, proposing a 

task with simpler instructions, ensuring a thorough understanding of the guidelines by the 

participants. Moreover, the task appeared to be unbalanced in terms of stimulus 

presentation, introducing a bias toward the <long= condition. To address this issue, the 

task could be adjusted by rebalancing the stimulus presentation or modifying the anchors 

to minimize such bias. Hence, we cannot still answer exhaustively to our initial question: 

semantic similarity seems to influence spatial perception, but future studies are needed to 

enrich our understanding of this intricate connection. 
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