Synthetic α-amino acid-based polymers represent a unique and versatile class of biomimetic materials. They display the same macromolecular backbone of proteins and they have the intrinsic ability to adopt stable secondary structures, such as α-helix and β-sheets, under specific environmental conditions. These secondary structures contribute significantly to the self-assembling character of the polypeptide chains. Such features lead to the formation of innovative, biocompatible and biodegradable supramolecular structures with potential biomedical and pharmaceutical applications. Currently, the most straightforward and practical approach for large-scale production of high molecular weight polypeptides is the Ring Opening Polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). The aim of the present thesis is providing a general overview of this type of polymerization, including the preparation of the NCA monomers directly from natural and protected amino acids, the polymerization mechanisms and the recent development of ROP with a living character. The living ROP represents a better control of the dispersion and of the length of the polymer chain. The main objective was to synthesize homopolymers - poly (γ-benzyl-L-glutamate) (PBLG), poly (L-leucine) (PLEU), poly (Boc-L-tryptophan) (PBLT) and poly (L-tryptophan) (PTRP) via ROP of the relative NCA, γ-benzyl-L-glutamate (BLG-NCA), L-leucine (Leu-NCA), Boc-L-tryptophan-OH (BLT-NCA) and L-tryptophan (Trp-NCA) N-carboxyanhydrides respectively. These homopolymers were obtained by using n-hexylamine or lithium hexamethyldisilazide (LiHMDS) as initiators of polymerization. The first involves a normal amine mechanism, while the second one LiHMDS concernes an activated monomer mechanism. Although these polymerizations proceed via different mechanisms, both initiators were efficient. Furthermore, PBLG and PLEU of different length were synthesized by changing the molar ratio monomer NCA : initiator (LiHMDS) and polymerization time. Subsequently the ROP copolymerization, initiated by n-hexylamine or LiHMDS, as been carried out by combining simultaneously two different monomers, to synthesize random copolymers. The obtained NCA monomers and polymers were characterized by 1H NMR spectroscopy. The NMR data confirmed the results. In conclusion, the homopolymers PBLG, PLEU, PBLT, PTRP and the random copolymers, deriving via ROP of NCA, are shown to be interesting polymers with a great potential that as not been fully developed yet. The future works could look at functionalizing the ends of the polymer chains, initiated by LiHMDS, with specific chemical groups and to deprotecting the side chains of PBLG and of PBLT if the functional group chemistry is to be used.
I polimeri sintetici a base di α-amminoacidi rappresentano una classe unica e versatile di materiali biomimetici. Presentano la stessa struttura a spina dorsale delle proteine naturali e possiedono la capacità intrinseca di adottare strutture secondarie stabili, come α-eliche e foglietti β, in condizioni ambientali specifiche. Tali strutture secondarie contribuiscono in modo significativo al carattere autoassemblante delle catene polipeptidiche e consentono la generazione di strutture supramolecolari innovative, biocompatibili e biodegradabili con potenziali applicazioni biomediche e farmaceutiche. Attualmente, l'approccio più semplice e pratico per la produzione su larga scala di polipeptidi ad alto peso molecolare è la Ring Opening Polymerization (ROP) di N-carbossianidridi α-amminoacidi (NCA). Lo scopo della presente tesi è fornire una panoramica generale delle ROP, compresi la preparazione dei monomeri NCA direttamente da amminoacidi naturali e protetti, i meccanismi di polimerizzazione coinvolti e i recenti sviluppi delle ROP a carattere vivente (living). Le living ROP consentono un migliore controllo della dispersione e della lunghezza della catena polimerica. L'obiettivo principale è stato quello di sintetizzare omopolimeri - poli (γ-benzil-L-glutammato) (PBLG), poli (L-leucina) (PLEU), poli (Boc-L-triptofano) (PBLT) e poli (L-triptofano) (PTRP) mediante ROP del corrispondente NCA, γ-benzil-L-glutammato (BLG-NCA), L-leucina (Leu-NCA), Boc-L-triptofano-OH (BLT-NCA) e L-triptofano (Trp-NCA) N-carbossianidridi rispettivamente. Tali omopolimeri sono stati ottenuti utilizzando n-esilammina o litio esametildisilazide (LiHMDS) come iniziatori della polimerizzazione. Il primo implica un meccanismo normal amine, mentre il secondo LiHMDS comporta un meccanismo activated monomer. Entrambi gli iniziatori sono risultati efficienti, sebbene le polimerizzazioni procedessero attraverso meccanismi diversi. Inoltre, sono stati sintetizzati PBLG e PLEU di diversa lunghezza variando il rapporto molare monomero NCA : iniziatore (LiHMDS) e i tempi di polimerizzazione. Successivamente è stata eseguita la copolimerizzazione ROP, combinando simultaneamente due diversi monomeri e usando n-esilammina o LiHMDS come iniziatori, per sintetizzare copolimeri random. I monomeri NCA e i polimeri ottenuti sono stati caratterizzati tramite spettroscopia 1H NMR. Le analisi NMR hanno confermato i risultati. In conclusione, gli omopolimeri PBLG, PLEU, PBLT, PTRP e i copolimeri random, derivanti da ROP di NCA, sono interessanti polimeri, il cui potenziale non è ancora stato del tutto sviluppato. Una direzione promettente potrebbe essere quella di funzionalizzare le estremità delle catene polimeriche, avviate da LiHMDS, con specifici gruppi chimici e di deproteggere le catene laterali di PBLG e di PBLT se si desidera utilizzare la chimica del gruppo funzionale.
Sintesi di omopolimeri e copolimeri random mediante Ring Opening Polymerization di N-carbossianidridi di α-amminoacidi
FORNACIARI, CHARLOTTE
2018/2019
Abstract
Synthetic α-amino acid-based polymers represent a unique and versatile class of biomimetic materials. They display the same macromolecular backbone of proteins and they have the intrinsic ability to adopt stable secondary structures, such as α-helix and β-sheets, under specific environmental conditions. These secondary structures contribute significantly to the self-assembling character of the polypeptide chains. Such features lead to the formation of innovative, biocompatible and biodegradable supramolecular structures with potential biomedical and pharmaceutical applications. Currently, the most straightforward and practical approach for large-scale production of high molecular weight polypeptides is the Ring Opening Polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCA). The aim of the present thesis is providing a general overview of this type of polymerization, including the preparation of the NCA monomers directly from natural and protected amino acids, the polymerization mechanisms and the recent development of ROP with a living character. The living ROP represents a better control of the dispersion and of the length of the polymer chain. The main objective was to synthesize homopolymers - poly (γ-benzyl-L-glutamate) (PBLG), poly (L-leucine) (PLEU), poly (Boc-L-tryptophan) (PBLT) and poly (L-tryptophan) (PTRP) via ROP of the relative NCA, γ-benzyl-L-glutamate (BLG-NCA), L-leucine (Leu-NCA), Boc-L-tryptophan-OH (BLT-NCA) and L-tryptophan (Trp-NCA) N-carboxyanhydrides respectively. These homopolymers were obtained by using n-hexylamine or lithium hexamethyldisilazide (LiHMDS) as initiators of polymerization. The first involves a normal amine mechanism, while the second one LiHMDS concernes an activated monomer mechanism. Although these polymerizations proceed via different mechanisms, both initiators were efficient. Furthermore, PBLG and PLEU of different length were synthesized by changing the molar ratio monomer NCA : initiator (LiHMDS) and polymerization time. Subsequently the ROP copolymerization, initiated by n-hexylamine or LiHMDS, as been carried out by combining simultaneously two different monomers, to synthesize random copolymers. The obtained NCA monomers and polymers were characterized by 1H NMR spectroscopy. The NMR data confirmed the results. In conclusion, the homopolymers PBLG, PLEU, PBLT, PTRP and the random copolymers, deriving via ROP of NCA, are shown to be interesting polymers with a great potential that as not been fully developed yet. The future works could look at functionalizing the ends of the polymer chains, initiated by LiHMDS, with specific chemical groups and to deprotecting the side chains of PBLG and of PBLT if the functional group chemistry is to be used.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/11512