Cardiovascular diseases represent one of the most frequent causes of death in the world, because they include a series of pathologies (coronary artery disease, atherosclerosis, hypertension and thrombosis) that affect blood vessels of different caliber with consequent repercussions on the internal cardiovascular system. There are also surgical approaches that involve transplantation of autologous, allogenic or xenogenic implants and the replacement of damaged vessels with artificial prostheses or inert blood vessels. However, this type of surgery has a number of disadvantages: in fact, they are difficult to apply to small diameter blood vessels (<6 mm) and can lead to the onset of post-surgical bacterial infections and consequently the risk of rejection of the implant. Therefore, an antibiotic drug treatment by infusion should be added to the surgical intervention which could cause allergic or toxic reactions. Tissue engineering (TE) represents a possible solution to these limitations through the creation of small vascular implants by combining biocompatible, biodegradable materials and cells, leading to the creation of engineered tubular constructs to be implanted in vivo. Moreover, combining the polymer tubular graft with an antibiotic could provide the inherent advantage of treat the patient for possible infection arising during surgery. This experimental work is focused on the realization of tubular vascular implants, with an internal diameter of 6 ± 0.5 mm and length for polylactide-co-polycaprolacton (PLA-PCL) polymer between (9.50 and 12.5 cm) and for polylactide-co-polyglycolide (PLGA) (9.75 and 13,1 cm), using electrospinning and containing Vancomycin (VMC), an antibiotic active against numerous antibiotic-resistant bacterial strains, usually administered in the way infusionally or orally (even if is a little absorbed). In particular, my thesis project set itself the objective of studying a method of collecting the tubular scaffold from the electrospinning collector apparatus, keeping tubular scaffold morphology intact and avoiding use of foreign materials to the electrospinning system. The electrospun matrices (eVtGs) were composed of PLGA or PLA.PCL at 15% w / v, DCM: Acetone (70:30) with the addition of 0.05% (v / v) Span 80 and a percentage of Vancomycin drug (VMC) equal to 5 % p / v. A rotating mandrel was used as the collector. The mandrel was initially covered with an aluminum foil to facilitate the detachment of the tubular matrix. This method of collecting the matrix, has the risk of breakage the tubular matrix. To solve this limit, in my experimental work I evaluated a new method to detach eVtGs from aluminum foil which is based on soaking matrix, still adhered to the mandrel, in a fluid that facilitates its detachment. The tests were carried out with ethanol and with isopropyl alcohol, in different soaking times of the matrix-mandrel for 20, 30, 40 and 60 seconds. At each immersion time, the matrix was characterized by its macro-morphology (with the determination of length and thickness) and micro-morphology (SEM analysis). The fluid detachment method resulted to optimize eVtGs detachment without damaging them and with reproducible results. Based on the results obtained for both PLGA and PLA-PCL matrices, isopropyl alcohol was selected as the suitable fluid to promote detachment of the matrix from the spindle. Furthermore, SEM analysis allowed to highlight homogeneous dispersion of the VMC in the matrices without the formation of solid precipitates.
Le malattie cardiovascolari rappresentano una delle più frequenti cause di morte nel mondo, perché comprendono una serie di patologie (coronaropatia, aterosclerosi, ipertensione e trombosi) che interessano vasi sanguini di diverso calibro con conseguenti ripercussioni sull’interno sistema cardiocircolatorio. Esistono, poi, approcci chirurgici che prevedono il trapianto di impianti autologhi, allogenici o xenogenici e la sostituzione dei vasi danneggiati con protesi artificiali o con vasi sanguini inerti. Questo tipo di interventi presenta, però, una serie di svantaggi: infatti, sono difficilmente applicabili a vasi sanguini di piccolo diametro (< 6 mm) e possono determinare l’insorgenza di infezioni batteriche post-chirurgiche e conseguentemente rischio di rigetto dell’impianto. All’intervento chirurgico andrebbe, quindi affiancato un trattamento antibiotico farmacologico per via infusionale che potrebbe, però, causare reazioni allergiche o tossiche. L’ingegneria tissutale rappresenta una possibile soluzione a queste limitazioni attraverso la realizzazione di impianti vascolari piccole dimensioni combinando materiali biocompatibili, biodegradabili e cellule, portando alla creazione di costrutti tubulari ingegnerizzati da impiantare in vivo. Questo lavoro di tesi si è focalizzato sulla realizzazione di impianti vascolari tubulari, con diametro interno di 6 ± 0.5 mm e lunghezza per polimero PLA-PCL fra (9.50 e 12.5 cm) e per PLGA (9,75 e 13.1 cm), realizzati mediante elettrofilatura e contenenti Vancomicina (VMC), un antibiotico attivo contro numerosi ceppi batterici antibiotico-resistenti, solitamente somministrati per via infusionale o orale (anche se poco assorbita). In particolare il mio progetto di tesi si è posto come obbiettivo di studiare un metodo di raccolte dello scaffold tubulare che ne mantenesse intatta la morfologia e che evitasse l’impiego di maeriale estraneo al sistema di elettrofilatura. Le matrici elettrofilate erano composte da PLGA o PLA.PCL al 15% p/v, DCM : Acetone (70:30) con aggiunta di 0.05% (v/v) Span 80 e una percentuale di farmaco Vancomicina (VMC) pari al 5% p/v. Come collettore è stato utilizzato un mandrino rotante. Il mandrino veniva inizialmente rivestito con un foglio di Aluminio per facilitare il distacco della matrice tubolare. Questo metodo di raccolta della matrice risultava abbastanza problematico perché portava spesso alla rottura della matrice tubolare. Per risolvere questo limite, nel mio lavoro sperimentale ho valuto un nuovo metodo per distaccare eVtGs da foglio allumini che è basato sul contatto per immersione della matrice, ancora adesa al mandrino, con un fluido che ne faciliti il distacco. I testi sono stati condotti con etanolo e con alcol isopropilico, variando i tempi di immersione della matrice-mandrino per 20, 30, 40 e 60 secondi. Ad ogni tempo di immersione la matrice è stata caratterizzata per la sua macro –morfologia (determinazione della lunghezza e spessore) e micro-morfologia (analisi SEM). Sulla base dei risultati ottenuti sia per le matrici in PLGA che per quelle in PLA-PCL, è stato selezionato l’alcol isopropilico come fluido idoneo a promuovere il distacco della matrice dal mandrino. Inoltre l’analisi al SEM ha permesso di evidenziare omogenea dispersione della VMC nelle matrici senza formazione di precipitati solidi.
CARATTERIZZAZIONE DI SCAFFOLD TUBOLARI ELETTROFILATI IN PLA-PC E PLGA CONTENENTI VANCOMICINA
ABDI, ZEINAB
2019/2020
Abstract
Cardiovascular diseases represent one of the most frequent causes of death in the world, because they include a series of pathologies (coronary artery disease, atherosclerosis, hypertension and thrombosis) that affect blood vessels of different caliber with consequent repercussions on the internal cardiovascular system. There are also surgical approaches that involve transplantation of autologous, allogenic or xenogenic implants and the replacement of damaged vessels with artificial prostheses or inert blood vessels. However, this type of surgery has a number of disadvantages: in fact, they are difficult to apply to small diameter blood vessels (<6 mm) and can lead to the onset of post-surgical bacterial infections and consequently the risk of rejection of the implant. Therefore, an antibiotic drug treatment by infusion should be added to the surgical intervention which could cause allergic or toxic reactions. Tissue engineering (TE) represents a possible solution to these limitations through the creation of small vascular implants by combining biocompatible, biodegradable materials and cells, leading to the creation of engineered tubular constructs to be implanted in vivo. Moreover, combining the polymer tubular graft with an antibiotic could provide the inherent advantage of treat the patient for possible infection arising during surgery. This experimental work is focused on the realization of tubular vascular implants, with an internal diameter of 6 ± 0.5 mm and length for polylactide-co-polycaprolacton (PLA-PCL) polymer between (9.50 and 12.5 cm) and for polylactide-co-polyglycolide (PLGA) (9.75 and 13,1 cm), using electrospinning and containing Vancomycin (VMC), an antibiotic active against numerous antibiotic-resistant bacterial strains, usually administered in the way infusionally or orally (even if is a little absorbed). In particular, my thesis project set itself the objective of studying a method of collecting the tubular scaffold from the electrospinning collector apparatus, keeping tubular scaffold morphology intact and avoiding use of foreign materials to the electrospinning system. The electrospun matrices (eVtGs) were composed of PLGA or PLA.PCL at 15% w / v, DCM: Acetone (70:30) with the addition of 0.05% (v / v) Span 80 and a percentage of Vancomycin drug (VMC) equal to 5 % p / v. A rotating mandrel was used as the collector. The mandrel was initially covered with an aluminum foil to facilitate the detachment of the tubular matrix. This method of collecting the matrix, has the risk of breakage the tubular matrix. To solve this limit, in my experimental work I evaluated a new method to detach eVtGs from aluminum foil which is based on soaking matrix, still adhered to the mandrel, in a fluid that facilitates its detachment. The tests were carried out with ethanol and with isopropyl alcohol, in different soaking times of the matrix-mandrel for 20, 30, 40 and 60 seconds. At each immersion time, the matrix was characterized by its macro-morphology (with the determination of length and thickness) and micro-morphology (SEM analysis). The fluid detachment method resulted to optimize eVtGs detachment without damaging them and with reproducible results. Based on the results obtained for both PLGA and PLA-PCL matrices, isopropyl alcohol was selected as the suitable fluid to promote detachment of the matrix from the spindle. Furthermore, SEM analysis allowed to highlight homogeneous dispersion of the VMC in the matrices without the formation of solid precipitates.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/11603