Boron Neutron Capture Therapy (BNCT) is a form of hadrontherapy based on the neutron capture reaction 10B(n,α)7Li, having a cross section of 3837 barns at thermal energies. First, a borated formulation is administered to the patient, then the tumour is irradiated with low energy neutrons. The selective effect of the therapy relies on the ability to achieve a higher boron concentration in the tumour compared to healthy tissues. In fact, the high LET charged particles emitted in the capture reaction have range in tissue of the order of 10 microns, thus dissipating their energy inside the cells where they are created. When a sufficient tumour-to-normal tissue boron concentration ratio is obtained, it is possible to deliver a therapeutic dose to the tumour while sparing the healthy tissues. This selectivity, based on boron bio-distribution, makes BNCT a potential option to treat disseminated or infiltrated malignancies, which cannot be treated with other methods. BNCT safety and effectiveness depend on a precise calculation of the dose delivered to the irradiated tissues. Dose evaluations in BNCT are complex because neutron interactions in tissue produce a mixed radiation field, each component of which has its own characteristics and effectiveness in causing biological damage. BNCT dose is expressed in photon-equivalent units to correlate the absorbed dose with the therapy outcomes, based on the knowledge gained in conventional photon therapy. For this purpose, it is important to develop accurate models based on radiobiological data, which are particularly needed for healthy tissues, among which the skin. Skin represents one of the limiting organs in BNCT treatments for two main reasons: it is the first organ that absorbs the neutron beam and its boron uptake is greater than that of other normal tissues when using the typical borated drug. The purpose of this work was to study the effect of BNCT in a Reconstructed Human Epidermis model (RHE) cultivated in vitro. The goal is to construct dose-effect curves for healthy skin, by irradiating the samples with neutrons only, with neutrons in presence of boron and with a reference photon source. The experimental work consisted in the assessment of the appropriate boron administration protocol in order to obtain a uniform distribution of boron in samples. Then tissues were then irradiated at different doses at the TRIGA Mark II research reactor of the University of Pavia and at the S. Matteo Polyclinic. Cell survival and morphological changes in the tissues were evaluated as a function of the absorbed dose and for different observation times after irradiations. The reliability of these curves, for their use in models for photon-isoeffective dose calculations, depends on the robustness of the dose calculation. The dose absorbed in each irradiation condition has been calculated by Monte Carlo simulations, using MCNP transport code. Efforts have been dedicated to the study of the most suitable calculation strategies according to dosimetric evaluations. Combining the radiobiological results with the calculated dosimetry, preliminary dose-effect assessment is presented in the last chapter of the thesis, together with some consideration about the future work to be carried out with RHE model. The described results represent the first step towards the construction of a BNCT Normal Tissue Complication Probability model for the skin, especially important for those cases where skin is the most radiosensitive organ involved in the irradiation.
La Boron Neutron Capture Therapy (BNCT) è una forma di adroterapia basata sulla reazione di cattura neutronica 10B(n,α)7Li, che ha una sezione d'urto di 3837 barns al energie termiche. Per prima cosa, viene somministrata al paziente una formulazione contenente 10B, dopodiché il tumore viene irraggiato con neutroni a bassa energia. L'effetto selettivo della terapia si basa sulla capacità di arricchire il tumore con maggiore concentrazione di boro rispetto ai tessuti sani. Infatti, le particelle cariche ad alto LET, emesse nella reazione di cattura, hanno un range nei tessuti dell'ordine di 10 micron, dissipando così la loro energia all'interno delle cellule in cui vengono create. Un sufficiente rapporto tra le concentrazione di boro nel tumore e nel tessuto normale permette di impartire una dose terapeutica al tumore, salvaguardando i tessuti sani circostanti. Questa selettività, basata sulla bio-distribuzione del boro, rende la BNCT una potenziale opzione per il trattamento di tumori maligni diffusi o infiltrati, che non possono essere trattati con altri metodi. La sicurezza e l'efficacia della BNCT dipendono da un calcolo preciso della dose assorbita dai tessuti irraggiati. Il calcolo della dose in BNCT è particolarmente complesso in quanto le interazioni dei neutroni nei tessuti producono un campo di radiazioni misto, ogni componente del quale ha le proprie caratteristiche e la propria efficacia nel causare danni biologici. La dose in BNCT è espressa in unità fotone-equivalenti affinché la dose assorbita possa essere correlata ai risultati della terapia, sulla base delle conoscenze acquisite nella terapia convenzionale con fotoni. A tal fine è importante sviluppare modelli accurati basati su dati radiobiologici, che sono particolarmente necessari per i tessuti sani, tra cui la pelle. La pelle rappresenta uno degli organi limitanti nei trattamenti BNCT per due motivi principali: è il primo organo che assorbe il fascio di neutroni e il suo assorbimento di boro è maggiore di quello di altri tessuti sani quando si utilizza il tipico farmaco borato. Lo scopo di questo lavoro è stato quello di studiare l'effetto della BNCT in un modello di epidermide umana ricostruita (RHE) coltivata in vitro. L'obiettivo è quello di costruire curve dose-effetto per la pelle sana, irraggiando i campioni solo con neutroni, con neutroni in presenza di boro e con una sorgente di fotoni di riferimento. Il lavoro sperimentale ha riguardato inizialmente la valutazione del protocollo di somministrazione del boro appropriato per ottenere una distribuzione uniforme di boro nei campioni. Successivamente, i tessuti sono stati irraggiati a diverse dosi presso il reattore di ricerca TRIGA Mark II dell'Università di Pavia e presso il Policlinico S. Matteo. La sopravvivenza cellulare e i cambiamenti morfologici nei tessuti sono stati valutati in funzione della dose assorbita e per diversi tempi di osservazione dopo gli irraggiamenti. L'affidabilità di queste curve, per il loro utilizzo nei modelli per il calcolo della dose equivalente a fotoni, dipende dalla robustezza del calcolo della dose. Il lavoro computazionale consiste nel calcolo Monte Carlo della dose assorbita in ogni condizione di irraggiamento, utilizzando il codice di trasporto MCNP. Particolare attenzione è stata dedicata allo studio delle strategie di calcolo più adeguate secondo valutazioni dosimetriche. Nell'ultimo capitolo della tesi si presentano delle valutazioni preliminari di relazione dose-effetto, combinando i risultati radiobiologici con la dosimetria calcolata, insieme ad alcune considerazioni sul lavoro futuro da svolgere con il modello RHE. I risultati descritti rappresentano il primo passo verso la costruzione di un modello di Normal Tissue Complication Probability (NTCP) per la pelle in BNCT, particolarmente importante per quei casi in cui la pelle è l'organo più radiosensibile coinvolto nell'irraggiamento.
Irraggiamento di pelle umana ricostruita coltivata in vitro: dosimetria computazionale e valutazioni radiobiologiche preliminari per studi sulla BNCT
GUIDI, CLARETTA
2018/2019
Abstract
Boron Neutron Capture Therapy (BNCT) is a form of hadrontherapy based on the neutron capture reaction 10B(n,α)7Li, having a cross section of 3837 barns at thermal energies. First, a borated formulation is administered to the patient, then the tumour is irradiated with low energy neutrons. The selective effect of the therapy relies on the ability to achieve a higher boron concentration in the tumour compared to healthy tissues. In fact, the high LET charged particles emitted in the capture reaction have range in tissue of the order of 10 microns, thus dissipating their energy inside the cells where they are created. When a sufficient tumour-to-normal tissue boron concentration ratio is obtained, it is possible to deliver a therapeutic dose to the tumour while sparing the healthy tissues. This selectivity, based on boron bio-distribution, makes BNCT a potential option to treat disseminated or infiltrated malignancies, which cannot be treated with other methods. BNCT safety and effectiveness depend on a precise calculation of the dose delivered to the irradiated tissues. Dose evaluations in BNCT are complex because neutron interactions in tissue produce a mixed radiation field, each component of which has its own characteristics and effectiveness in causing biological damage. BNCT dose is expressed in photon-equivalent units to correlate the absorbed dose with the therapy outcomes, based on the knowledge gained in conventional photon therapy. For this purpose, it is important to develop accurate models based on radiobiological data, which are particularly needed for healthy tissues, among which the skin. Skin represents one of the limiting organs in BNCT treatments for two main reasons: it is the first organ that absorbs the neutron beam and its boron uptake is greater than that of other normal tissues when using the typical borated drug. The purpose of this work was to study the effect of BNCT in a Reconstructed Human Epidermis model (RHE) cultivated in vitro. The goal is to construct dose-effect curves for healthy skin, by irradiating the samples with neutrons only, with neutrons in presence of boron and with a reference photon source. The experimental work consisted in the assessment of the appropriate boron administration protocol in order to obtain a uniform distribution of boron in samples. Then tissues were then irradiated at different doses at the TRIGA Mark II research reactor of the University of Pavia and at the S. Matteo Polyclinic. Cell survival and morphological changes in the tissues were evaluated as a function of the absorbed dose and for different observation times after irradiations. The reliability of these curves, for their use in models for photon-isoeffective dose calculations, depends on the robustness of the dose calculation. The dose absorbed in each irradiation condition has been calculated by Monte Carlo simulations, using MCNP transport code. Efforts have been dedicated to the study of the most suitable calculation strategies according to dosimetric evaluations. Combining the radiobiological results with the calculated dosimetry, preliminary dose-effect assessment is presented in the last chapter of the thesis, together with some consideration about the future work to be carried out with RHE model. The described results represent the first step towards the construction of a BNCT Normal Tissue Complication Probability model for the skin, especially important for those cases where skin is the most radiosensitive organ involved in the irradiation.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/11609