BAG3 is a co-chaperone belonging to the Bcl-2–associated athanogene family. Its multi-modular structure allows BAG3 to interact with several proteins, among which HSP70 and HSPB8 chaperones can be found. The three proteins act together as a part of the chaperone-assisted selective autophagy (CASA) complex, representing the branch of selective macroautophagy that competes with the ubiquitin-proteasome system (UPS) for the clearance of HSP70-bound polyubiquitylated cytoplasmic clients. BAG3 regulates the architecture and timing of CASA complex formation and retrograde transport to the microtubule-organizing center (MTOC), since it can bind to HSP70, through the BAG domain, to two molecules of HSPB8, through the isoleucine-proline-valine (IPV) motifs, and to dynein. The substitution of the proline residue at position 209 with leucine, glutamine or serine (P209L, P209Q, P209S) in the second IPV motif of BAG3 causes specific forms of neuropathy, myopathy and/or cardiomyopathy. The aim of this thesis was to evaluate changes in the biochemical behavior of BAG3 P209 mutants in comparison to that of the wild-type protein and of another BAG3 mutant carrying a glutamate-to-lysine substitution in position 455 (E455K) which falls in the BAG domain and is associated to dilated cardiomyopathy. The obtained results indicate that BAG3 P209 mutants are affected by a toxic gain of function that significantly lowers protein solubility and leads to their accumulation within insoluble aggresomes. Such phenotype is not displayed by BAG3 E455K, suggesting that aberrant protein aggregation is a feature restricted to the IPV-motif BAG3 mutants. BAG3 P209L seems to be characterized by an even lower solubility compared to the other known P209 mutants, despite the fact that the three substitutions target the same BAG3 codon. This might be the reason behind the higher severity of BAG3 P209L-associated clinical phenotype. Moreover, interaction with BAG3 P209L reduces HSPB8 solubility, possibly by promoting its aggresomal relocation. This suggests that the dominant gain-of-function of the P209L mutant might be at the basis of a decrease in selective macroautophagy capacity. Pharmacological inhibition of the 26S proteasome does not seem to significantly affect BAG3 P209L elimination, while blockage of the autophagic pathway determines an evident reduction in the clearance of the mutant protein. Consistently, inhibition of aggresome formation through the disruption of dynein-mediated retrograde transport and trehalose-mediated autophagic induction causes a reduction in BAG3 P209L accumulation and promotes aggregate degradation, respectively. This suggests that the pharmacological stimulation of autophagy could be a promising approach to counteract the aberrant BAG3 P209L accumulation within aggresomes, therefore alleviating clinical symptoms.
BAG3 è una proteina co-chaperone appartenente alla famiglia dei geni antiapoptotici associati a Bcl-2. Grazie alla sua struttura multimodulare, BAG3 può interagire con svariate proteine, tra cui le proteine chaperone HSP70 e HSPB8. Queste tre proteine fanno parte del complesso CASA (chaperone-assisted selective autophagy), che agisce nella macroautofagia selettiva per l’eliminazione delle proteine poliubiquitinate legate da HSP70 a livello citoplasmatico. BAG3 regola l’assemblaggio del complesso CASA ed il suo trasporto retrogrado al centrosoma, interagendo con HSP70, tramite il dominio BAG, con due molecole di HSPB8, tramite i due domini isoleucina-prolina-valina (IPV), e con la proteina motrice dineina. La sostituzione del residuo di prolina in posizione 209 nella sequenza amminoacidica di BAG3 con un residuo di leucina, di glutammina o di serina (P209L, P209Q, P209S), a livello del secondo dominio IPV, determina lo sviluppo di specifiche forme di neuropatia, miopatia e/o cardiomiopatia. Il presente lavoro di tesi è stato dedicato alla caratterizzazione del comportamento biochimico dei mutanti P209 di BAG3, per confronto con la proteina wild-type e con un ulteriore mutante di BAG3 recante la sostituzione del residuo di acido glutammico in posizione 455 con un residuo di lisina (E455K) nel dominio BAG ed associato a cardiomiopatia dilatativa. I risultati ottenuti indicano che le mutazioni in posizione P209 determinano l’acquisizione di una funzione tossica da parte di BAG3, la cui solubilità diminuisce drasticamente, portando all’accumulo delle proteine mutate in aggresomi insolubili. Tale fenotipo aberrante non è invece associato alla mutazione E455K, pertanto l’aggregazione proteica è associata ai soli mutanti in cui ad essere affetto è il dominio IPV. BAG3 P209L mostra una solubilità ancor più ridotta rispetto agli altri mutanti P209 noti, nonostante le tre sostituzioni coinvolgano il medesimo codone del gene corrispondente. La maggior severità della sintomatologia clinica legata a BAG3 P209L potrebbe essere associata proprio alla solubilità estremamente ridotta della proteina. Inoltre, la presenza del mutante P209L si associa ad una ridotta solubilità di HSPB8. Questo dato suggerisce che la mutazione P209L potrebbe determinare una riduzione della capacità degradativa del complesso CASA. L’inibizione farmacologica del proteasoma 26S non sembra avere effetti significativi sull’eliminazione di BAG3 P209L, mentre il blocco dell’autofagia determina un drastico calo del tasso di degradazione della proteina mutata. Inoltre, l’inibizione della formazione dell’aggresoma causata dall’interruzione del trasporto retrogrado mediato dalla dineina ed il potenziamento dell’autofagia prodotto dal disaccaride trealosio inducono un rallentamento nell’accumulo di BAG3 P209L e ne promuovono la degradazione, rispettivamente. Questi risultati suggeriscono che l’attivazione farmacologica dell’autofagia potrebbe risultare un valido approccio terapeutico per contrastare l’accumulo tossico di BAG3 P209L nell’aggresoma ed alleviare la sintomatologia clinica associata all’aggregazione della proteina mutante.
Caratterizzazione del comportamento biochimico dei mutanti della proteina BAG3 coinvolti in malattie neuromuscolari
COZZI, MARTA
2019/2020
Abstract
BAG3 is a co-chaperone belonging to the Bcl-2–associated athanogene family. Its multi-modular structure allows BAG3 to interact with several proteins, among which HSP70 and HSPB8 chaperones can be found. The three proteins act together as a part of the chaperone-assisted selective autophagy (CASA) complex, representing the branch of selective macroautophagy that competes with the ubiquitin-proteasome system (UPS) for the clearance of HSP70-bound polyubiquitylated cytoplasmic clients. BAG3 regulates the architecture and timing of CASA complex formation and retrograde transport to the microtubule-organizing center (MTOC), since it can bind to HSP70, through the BAG domain, to two molecules of HSPB8, through the isoleucine-proline-valine (IPV) motifs, and to dynein. The substitution of the proline residue at position 209 with leucine, glutamine or serine (P209L, P209Q, P209S) in the second IPV motif of BAG3 causes specific forms of neuropathy, myopathy and/or cardiomyopathy. The aim of this thesis was to evaluate changes in the biochemical behavior of BAG3 P209 mutants in comparison to that of the wild-type protein and of another BAG3 mutant carrying a glutamate-to-lysine substitution in position 455 (E455K) which falls in the BAG domain and is associated to dilated cardiomyopathy. The obtained results indicate that BAG3 P209 mutants are affected by a toxic gain of function that significantly lowers protein solubility and leads to their accumulation within insoluble aggresomes. Such phenotype is not displayed by BAG3 E455K, suggesting that aberrant protein aggregation is a feature restricted to the IPV-motif BAG3 mutants. BAG3 P209L seems to be characterized by an even lower solubility compared to the other known P209 mutants, despite the fact that the three substitutions target the same BAG3 codon. This might be the reason behind the higher severity of BAG3 P209L-associated clinical phenotype. Moreover, interaction with BAG3 P209L reduces HSPB8 solubility, possibly by promoting its aggresomal relocation. This suggests that the dominant gain-of-function of the P209L mutant might be at the basis of a decrease in selective macroautophagy capacity. Pharmacological inhibition of the 26S proteasome does not seem to significantly affect BAG3 P209L elimination, while blockage of the autophagic pathway determines an evident reduction in the clearance of the mutant protein. Consistently, inhibition of aggresome formation through the disruption of dynein-mediated retrograde transport and trehalose-mediated autophagic induction causes a reduction in BAG3 P209L accumulation and promotes aggregate degradation, respectively. This suggests that the pharmacological stimulation of autophagy could be a promising approach to counteract the aberrant BAG3 P209L accumulation within aggresomes, therefore alleviating clinical symptoms.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/11742