In the last decades, growing global pollution has led to the necessity of replacing industrial processes with more ecological alternatives. In this contest, biocatalysis was chosen as a promising solution since it exploits the enzymes’ ability to perform chemical reactions in mild conditions, with relative low costs and without the production of waste materials. In organic synthesis, one of the most relevant and difficult reaction is the selective introduction of an oxygen molecule. For this purpose, oxygen-transferring enzymes were taken into consideration in order to solve these problems. Among the variety of possible candidates, few years ago, a new family of fungal heme peroxygenases called Unspecific Peroxygenases (UPOs) have aroused the interest of the scientific community. UPOs have been linked to catalyze a direct oxygen insertion, without the requirement of additional enzymes or expensive cofactors, from hydrogen peroxide to a wide range of aliphatic and aromatic substrates with high regio- and stereo-selectivity. Despite their multiple potential industrial applications, few UPOs’ structures have been determined. The work described in this thesis focused on a new peroxygenase, cloned by our collaborators in Graz. The enzyme was expressed in a high yield using a five liters bioreactor and Pichia pastoris as expression system, and successfully purified using three different chromatographic columns. Moreover, a biochemical characterization was conducted in order to determine protein’s peroxidase and peroxygenase activities and its thermal stability. In the end, subsequently to a de-glycosylation process, protein’s crystals were obtained using two different crystallization methodologies. With our insights, we defined the starting point for structural studies that will contribute to have a better comprehension about enzyme’s reaction mechanism and, eventually, the generation of more robust and efficient catalysts.
Negli ultimi anni, un crescente livello di inquinamento globale ha portato alla necessità di sostituire i moderni processi industriali con alternative più ecologiche. In questo contesto, la biocatalisi è stata scelta come una promettente soluzione, dal momento che sfrutta l’abilità degli enzimi di svolgere reazioni in condizioni favorevoli, con costi relativamente accessibili e senza la produzione di materiali di scarto. Nel campo della sintesi organica, una delle reazioni più importanti e difficili è l’introduzione selettiva di una molecola di ossigeno. A questo scopo, gli “oxygen transferring enzymes” sono stati presi in considerazione. Tra numerosi candidati, recententemente, una nuova famiglia di eme perossigenasi funginee chiamata Unspecific Peroxygenases (UPOs) ha suscitato l’interesse della comunità scientifica. Le UPOs catalizzano una diretta inserzione di una molecola di ossigeno dal perossido di idrogeno ad una vasta gamma di composti alifatici ed aromatici con elevata regio- e stereo- selettività, senza la necessità di ulteriori enzimi o costosi cofattori. Nonostante le multiple applicazioni in campo industriale da parte delle UPOs, poche strutture sono state determinate. Il lavoro descritto in questa tesi si focalizza su una nuova perossigenasi, clonata dai nostri collaboratori di Graz. L’enzima è stato espresso con una resa elevata attraverso un fermentatore da 5 litri e purificato con successo attraverso l’utilizzo di tre diverse colonne cromatografiche. In aggiunta, è stata condotta una caratterizzazione di tipo biochimico per determinare l’attività perossidasica e perossigenasica della proteina e la sua termo- stabilità. Infine, successivamente ad un processo di de-glicosilazione, sono stati ottenuti cristalli proteici mediante l’applicazione di due differenti metodologie di cristallizzazione. Con i nostri esperimenti, abbiamo definito un punto di partenza per studi di tipo strutturale atti a comprendere meglio il meccanismo di reazione dell’enzima e, eventualmente, la creazione di catalizzatori più resistenti e performanti.
Expression, purification, biochemical characterization and crystallization of a new Peroxygenase
BOVERIO, ALESSANDRO
2019/2020
Abstract
In the last decades, growing global pollution has led to the necessity of replacing industrial processes with more ecological alternatives. In this contest, biocatalysis was chosen as a promising solution since it exploits the enzymes’ ability to perform chemical reactions in mild conditions, with relative low costs and without the production of waste materials. In organic synthesis, one of the most relevant and difficult reaction is the selective introduction of an oxygen molecule. For this purpose, oxygen-transferring enzymes were taken into consideration in order to solve these problems. Among the variety of possible candidates, few years ago, a new family of fungal heme peroxygenases called Unspecific Peroxygenases (UPOs) have aroused the interest of the scientific community. UPOs have been linked to catalyze a direct oxygen insertion, without the requirement of additional enzymes or expensive cofactors, from hydrogen peroxide to a wide range of aliphatic and aromatic substrates with high regio- and stereo-selectivity. Despite their multiple potential industrial applications, few UPOs’ structures have been determined. The work described in this thesis focused on a new peroxygenase, cloned by our collaborators in Graz. The enzyme was expressed in a high yield using a five liters bioreactor and Pichia pastoris as expression system, and successfully purified using three different chromatographic columns. Moreover, a biochemical characterization was conducted in order to determine protein’s peroxidase and peroxygenase activities and its thermal stability. In the end, subsequently to a de-glycosylation process, protein’s crystals were obtained using two different crystallization methodologies. With our insights, we defined the starting point for structural studies that will contribute to have a better comprehension about enzyme’s reaction mechanism and, eventually, the generation of more robust and efficient catalysts.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/11803