Myocardial infarction (MI) causes a high number of deaths worldwide. Left ventricular remodeling, and the excessive formation of fibrotic tissue are consequences of MI and account for the long-term fatalities that occur among patients with a history of MI. Currently, a range of novel treatment options is subject to research, namely, cardiac patches. Cardiac patches have been developed as a possible treatment option, aiming to prevent the formation of fibrotic tissue and thus minimize left ventricular remodeling. However, problems are frequently encountered among different kinds of cardiac patches, such as rejection from the immune system and scar tissue formation caused by sutures from surgery, which is contra-productive to the therapeutic objective. Hence, the search for biomaterials that can overcome these problems is subject to current research topics. This work presents the possible use of the biomaterial bacterial cellulose (BC) as a basis for cardiac patches, with high potential to overcome the above-mentioned problems. By cross-linking gelatin and polypyrrole inside the BC matrix further properties like conductivity, are attributed to the composite. For a highly selective drug delivery modified, cardiac tissue targeting acetalated dextran spermine nanoparticles (AcDEXSp NPs) were loaded inside the system. For the characterization of the product, scanning electron microscopy images of the BC and composite BC surfaces were taken, the NPs distribution inside the matrix was observed by fluorescence microscope and the BC’s drying and swelling properties were documented. In addition, drug release studies were conducted. Firstly, the release of two drug compounds, N-[4-(diethylamino)phenyl]-5-methyl-3-phenylisoxazole-4-carboxamide (3i-1000 inhibitor) and curcumin, from BCs with different thicknesses were studied to define whether the BC’s thickness had an impact on the release kinetics. Secondly, the release of NPs from BC composites was conducted, and lastly, a dual release system from BC composites was evaluated. The system was loaded with pirfenidone, an anti-fibrotic drug, and AcDEXSp NPs, loaded with two compounds: 4-(4’-Fluorophenyl)-2-(4’-methylsulfinylphenyl)-5-(4’-pyridyl)-imidazole (SB203580) and 6-[2-[[4-(2,4-dichlorophenyl)-5-(5-methyl-1H-imidazol-2-yl)pyrimidin2yl]amino]ethylamino]pyridine-3-carbonitrile (CHIR99021). Both SB203580 and CHIR99021 promoted cardiomyocyte differentiation. Finally, cell viability tests were conducted on the different combinations of BC (composites) and drugs. Overall, the results of this thesis demonstrated that a BC composite can be considered as a possible drug release system for cardiac applications.
L’infarto miocardico attualmente si trova tra le cause di morte più frequenti in tutto il mondo. Per questo l’obiettivo di trovare nuove terapie è oggetto di multiple ricerche. Il rimodellamento del ventricolo sinistro e la formazione eccessiva di tessuto fibrotico accadono in conseguenza all’infarto miocardico e sono responsabili per i decessi a lungo termine tra i pazienti che hanno subito un infarto miocardico in passato. I cardiac patch sono stati sviluppati per la terapia post infarto con l’obiettivo di prevenire la formazione eccessiva di tessuto fibrotico e quindi minimizzare il rimodellamento del ventricolo sinistro. Tuttavia, si verificano spesso dei problemi con i diversi cardiac patch. Vengono facilmente rigettati da parte del sistema immunitario, e la maggior parte dei patch deve essere attaccato al tessuto cardiaco mediante sutura; questo può provocare la formazione di ulteriore tessuto fibrotico il quale è contro produttivo all’obiettivo terapeutico. Questo lavoro tratta il possibile uso del biomateriale cellulosa batterica (CB) da base per i cardiac patch considerato che le sue proprietà naturali hanno il potenziale di superare detti ostacoli. Altre proprietà, come la conduttività possono essere attribuiti al materiale con il cross-linking di gelatina e polipirrolo all’interno della matrice di CB creando dei compositi. Per una drug delivery altamente selettiva delle nanoparticelle a base di destrano acetalato con spermina (AcDEXSp NP) modificate vengono integrate nel sistema. Per la caratterizzazione del prodotto sono state prese immagini SEM della superficie di CB e dei compositi di CB. Sono state documentate la distribuzione di NP all’interno della matrice e le proprietà di essiccamento e re-idratazione. Inoltre sono stati eseguiti studi di rilascio per osservare il rilascio di farmaco dalla matrice di CB e dalle NP. Per primo, è stato esaminato il rilascio di N-[4-(dietilamino)fenil]-5-metil-3-fenilisoxazolo-4-carbossamide (Inibitore 3i-1000) e curcumina da CB pura con spessori diversi, per definire se lo spessore abbia un impatto sulla cinetica di rilascio. Per secondo, è stato esaminato il rilascio di NP dal composito di CB, e per ultimo un sistema di rilascio duale con pirfenidone, un farmaco anti-fibrotico, e/o NP caricati con 4-(4’-Fluorofenil)-2-(4’-metilsulfinilfenil)-5-(4’-piridil)-imidazolo (SB203580) e 6-[2-[[4-(2,4-diclorofenil)-5-(5-metil-1H-imidazol-2-il)pirimidin2il]amino]etilamino]piridin-3-carbonitrile (CHIR99021), che promuovono differenziazione di cardiomiociti. Alcuni test di vitalità cellulare sono stati eseguiti sulle diverse combinazioni di (compositi di) CB e farmaci. I risultati dei miei studi dimostrano che i compositi di CB possono essere considerati dei possibili sistemi di rilascio di farmaco per applicazione cardiaca.
Sviluppo e caratterizzazione di patch a base di compositi di cellulosa batterica e nanoparticelle per rilascio e applicazione locale
VECCHIO, CHARLOTTE
2019/2020
Abstract
Myocardial infarction (MI) causes a high number of deaths worldwide. Left ventricular remodeling, and the excessive formation of fibrotic tissue are consequences of MI and account for the long-term fatalities that occur among patients with a history of MI. Currently, a range of novel treatment options is subject to research, namely, cardiac patches. Cardiac patches have been developed as a possible treatment option, aiming to prevent the formation of fibrotic tissue and thus minimize left ventricular remodeling. However, problems are frequently encountered among different kinds of cardiac patches, such as rejection from the immune system and scar tissue formation caused by sutures from surgery, which is contra-productive to the therapeutic objective. Hence, the search for biomaterials that can overcome these problems is subject to current research topics. This work presents the possible use of the biomaterial bacterial cellulose (BC) as a basis for cardiac patches, with high potential to overcome the above-mentioned problems. By cross-linking gelatin and polypyrrole inside the BC matrix further properties like conductivity, are attributed to the composite. For a highly selective drug delivery modified, cardiac tissue targeting acetalated dextran spermine nanoparticles (AcDEXSp NPs) were loaded inside the system. For the characterization of the product, scanning electron microscopy images of the BC and composite BC surfaces were taken, the NPs distribution inside the matrix was observed by fluorescence microscope and the BC’s drying and swelling properties were documented. In addition, drug release studies were conducted. Firstly, the release of two drug compounds, N-[4-(diethylamino)phenyl]-5-methyl-3-phenylisoxazole-4-carboxamide (3i-1000 inhibitor) and curcumin, from BCs with different thicknesses were studied to define whether the BC’s thickness had an impact on the release kinetics. Secondly, the release of NPs from BC composites was conducted, and lastly, a dual release system from BC composites was evaluated. The system was loaded with pirfenidone, an anti-fibrotic drug, and AcDEXSp NPs, loaded with two compounds: 4-(4’-Fluorophenyl)-2-(4’-methylsulfinylphenyl)-5-(4’-pyridyl)-imidazole (SB203580) and 6-[2-[[4-(2,4-dichlorophenyl)-5-(5-methyl-1H-imidazol-2-yl)pyrimidin2yl]amino]ethylamino]pyridine-3-carbonitrile (CHIR99021). Both SB203580 and CHIR99021 promoted cardiomyocyte differentiation. Finally, cell viability tests were conducted on the different combinations of BC (composites) and drugs. Overall, the results of this thesis demonstrated that a BC composite can be considered as a possible drug release system for cardiac applications.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/11853