The study of gut microbiota and its key roles for humans is a rapidly moving field of research that has the aim to uncover its different mechanisms of action in order to improve the quality of human life or prevent possible potential diseases by targeting it. Since different microbes can reside in all sites of human body, microbiota can affect different districts of the body in different ways and so, its implication on human health is huge and difficult to describe. There are increasing evidences showing reciprocal interaction between chronic inflammation and psychiatric disorders and it involves multiple pathways that are highly debated. Recently, Marotta et al, have demonstrated that a mixture of probiotics (containing Lactobacillus fermentum LF16, L. rhamnosus LR06, L. plantarum LP01, and Bifidobacterium longum BL04) could successfully affect depressive mood state, anger, and fatigue and, at the same time, reduce negative thoughts and sensitivity to negative situations. Aim of this thesis project is to investigate these probiotic strains (LF16, LR06, LP01, and BL04), as single strain as well as probiotic blend, on in vitro cell damage in inflammatory models to demonstrated their possible biological and mechanistic effects. Firstly, the probiotic strains have been characterized by functional point of view by investigating their influence on the modulation of immune response in the peripheral blood mononuclear cells (PBMCs) and by assessing their capacity to inhibit pathogens growth: K. pneumoniae and E. coli. These Gram-negative bacteria are frequent in patients with autism spectrum disorders. Then, two cellular model systems have been developed in order to investigate both the ability of the probiotic blend to recover after inflammatory damage and the capacity to protect before inflammatory damage. In particular, co-culture of Caco2 (validated model of intestinal permeability) and HUVEC (used as endothelial cellular model) has been used to develop Blood-Gut model: model of intestinal-endothelial cross-talking; and co-culture of Caco2 and SH-SY5Y cells (used as neuronal cellular model) has been used to develop Brain-Gut model: model of intestinal-neuronal cross-talking. Two different types of experimental settings have been used. In the first case, it has been produced an intestinal damage by pre-treating the Caco2 cells with pro-inflammatory cytokines (IL- and TNF-) before the treatment with probiotics as model to evaluate the capacity of the probiotic strains to repair the damage. In the second case, Caco2 cells were pre-incubated with probiotics and then they were treated with the same pro-inflammatory cytokines to cause the intestinal inflammatory damage in order to test the ability of probiotics to protect the integrity of the membrane before the occurrence of the damage. In addition, in the same models, it has been produced an oxidative damage, by using H2O2, both in HUVEC and SH-SY5Y cells, in order to mimic a potential endothelial or neuronal damage. This experimental setting has demonstrated that Caco2 incubated with probiotics were able to cross-talk with the damaged endothelial or neuronal cells. After the treatments, different assays (MTT, TEER method, Adhesion test, and ROS detection) were performed in order to assess the biological activity of probiotics in the different cellular models. All experiments were carried out multiple times (n=3) and each tests involved a duplicate of each experimental condition. Results show that, all probiotic strains utilized in this study have anti-inflammatory activity and they are also able to inhibit the growth of the analyzed pathogens. In conclusion, the use of each single probiotic strain as well as the probiotic blend has proved to be a successful strategy in order to maintain membrane integrity in the Gut-cellular model and to recover and protect endothelial and neuronal tissues, opening new perspectives in the treatment of the related disorders.
Lo studio del microbiota intestinale e del suo potenziale ruolo chiave per il benessere dell’uomo è un’area di ricerca in crescente sviluppo. Studiare il microbiota significa indagare i suoi diversi meccanismi d’azione per migliorare la qualità di vita dell’uomo e ove possibile prevenire la possibile insorgenza di malattie. I batteri possono colonizzare diversi distretti corporei, pertanto le implicazioni che essi possono avere sulla salute umana sono innumerevoli e difficili da descrivere. Ci sono diverse evidenze che sottolineano la presenza di una correlazione tra infiammazione cronica e disordini neuropsichiatrici, anche noti come disturbi dello spettro autistico. Recentemente, Marotta et al, hanno dimostrato che un mix di probiotici (contenente Lactobacillus fermentum LF16, L. rhamnosus LR06, L. plantarum LP01, e Bifidobacterium longum BL04) può influenzare lo stato di depressione, la rabbia, il senso di fatica e allo stesso tempo ridurre pensieri negativi. Lo scopo di questa tesi è studiare questi probiotici (LF16, LR06, LP01, and BL04), sia come singoli ceppi che in associazione, in modo da capire i loro effetti biologici in modelli cellulari di danno infiammatorio. Per prima cosa, i ceppi sono stati caratterizzati da un punto di vista funzionale: sia indagando come modulino la risposta immunitaria in cellule mononucleate da sangue periferico (PBMCs), sia testando la loro capacità di inibire la crescita di patogeni. In particolare, in questo studio sono stati analizzati due ceppi patogeni, K. pneumoniae e E. coli, molto frequenti in pazienti affetti da disordini dello spettro autistico. Successivamente, i ceppi sono stati studiati su due modelli cellulari sviluppati con lo scopo di indagare la capacità di recupero dei ceppi probiotici dopo danno infiammatorio ma anche la loro abilità di proteggere prima dell’insorgenza del danno. In particolare, co-culture di Caco2 (modello cellulare di permeabilità intestinale validato) e HUVECs (usate come modello cellulare endoteliale) sono state utilizzate come modello per indagare l’asse intestino-endotelio, mentre co-culture di Caco2 e SH-SY5Y (usate come modello cellulare neuronale) sono state utilizzate per indagare il cross-talk dell’asse intestino-cervello. Sono stati eseguiti due diversi protocolli sperimentali. Nel primo caso, è stato indotto un danno di tipo infiammatorio alle cellule Caco2 attraverso l’utilizzo di citochine pro-infiammatorie (IL- and TNF-) seguito da trattamento con i probiotici, in modo da valutare la capacità dei ceppi probiotici di riparare il danno della membrana intestinale. Nel secondo caso, le cellule Caco2 sono state prima trattate con i probiotici e poi è stato indotto il danno in modo da valutare la capacità da parte dei ceppi di proteggere l’integrità della membrana. Inoltre, attraverso gli stessi modelli, è stata valutata anche la capacità dei ceppi di influenzare il decorso del danno ossidativo causato alle cellule endoteliali e neuronali attraverso l’utilizzo di H2O2 dimostrando l’importante cross-talk presente tra le cellule. Tutti gli esperimenti sono stati condotti più volte (n=3) e ciascuna condizione sperimentale è stata svolta in duplicato. I risultati mostrano che tutti i ceppi probiotici utilizzati in questo studio hanno attività anti-infiammatoria e sono in grado di inibire la crescita dei patogeni analizzati. Inoltre, l’uso di questi probiotici, sia come singolo ceppo che in associazione, si è rivelato un’ottima strategia sia per mantenere l’integrità della membrana intestinale nel modello cellulare Caco2 sia per riparare e proteggere i tessuti endoteliali e neuronali, aprendo così nuove prospettive per il trattamento dei disturbi dello spettro autistico.
Prevenzione o trattamento? Effetti di ceppi probiotici su modelli cellulari in vitro
VISCIGLIA, ANNALISA
2019/2020
Abstract
The study of gut microbiota and its key roles for humans is a rapidly moving field of research that has the aim to uncover its different mechanisms of action in order to improve the quality of human life or prevent possible potential diseases by targeting it. Since different microbes can reside in all sites of human body, microbiota can affect different districts of the body in different ways and so, its implication on human health is huge and difficult to describe. There are increasing evidences showing reciprocal interaction between chronic inflammation and psychiatric disorders and it involves multiple pathways that are highly debated. Recently, Marotta et al, have demonstrated that a mixture of probiotics (containing Lactobacillus fermentum LF16, L. rhamnosus LR06, L. plantarum LP01, and Bifidobacterium longum BL04) could successfully affect depressive mood state, anger, and fatigue and, at the same time, reduce negative thoughts and sensitivity to negative situations. Aim of this thesis project is to investigate these probiotic strains (LF16, LR06, LP01, and BL04), as single strain as well as probiotic blend, on in vitro cell damage in inflammatory models to demonstrated their possible biological and mechanistic effects. Firstly, the probiotic strains have been characterized by functional point of view by investigating their influence on the modulation of immune response in the peripheral blood mononuclear cells (PBMCs) and by assessing their capacity to inhibit pathogens growth: K. pneumoniae and E. coli. These Gram-negative bacteria are frequent in patients with autism spectrum disorders. Then, two cellular model systems have been developed in order to investigate both the ability of the probiotic blend to recover after inflammatory damage and the capacity to protect before inflammatory damage. In particular, co-culture of Caco2 (validated model of intestinal permeability) and HUVEC (used as endothelial cellular model) has been used to develop Blood-Gut model: model of intestinal-endothelial cross-talking; and co-culture of Caco2 and SH-SY5Y cells (used as neuronal cellular model) has been used to develop Brain-Gut model: model of intestinal-neuronal cross-talking. Two different types of experimental settings have been used. In the first case, it has been produced an intestinal damage by pre-treating the Caco2 cells with pro-inflammatory cytokines (IL- and TNF-) before the treatment with probiotics as model to evaluate the capacity of the probiotic strains to repair the damage. In the second case, Caco2 cells were pre-incubated with probiotics and then they were treated with the same pro-inflammatory cytokines to cause the intestinal inflammatory damage in order to test the ability of probiotics to protect the integrity of the membrane before the occurrence of the damage. In addition, in the same models, it has been produced an oxidative damage, by using H2O2, both in HUVEC and SH-SY5Y cells, in order to mimic a potential endothelial or neuronal damage. This experimental setting has demonstrated that Caco2 incubated with probiotics were able to cross-talk with the damaged endothelial or neuronal cells. After the treatments, different assays (MTT, TEER method, Adhesion test, and ROS detection) were performed in order to assess the biological activity of probiotics in the different cellular models. All experiments were carried out multiple times (n=3) and each tests involved a duplicate of each experimental condition. Results show that, all probiotic strains utilized in this study have anti-inflammatory activity and they are also able to inhibit the growth of the analyzed pathogens. In conclusion, the use of each single probiotic strain as well as the probiotic blend has proved to be a successful strategy in order to maintain membrane integrity in the Gut-cellular model and to recover and protect endothelial and neuronal tissues, opening new perspectives in the treatment of the related disorders.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/11909