The reticulocyte (retic) is the immediate precursor of a red blood cell (RBC). It lacks the nucleus (in mammals) and is still immature, because it has to lose volume and surface area before attaining the characteristic shape of a RBC: the biconcave discocyte. Two main steps are needed to achieve this morphology. The first occurs in the bone marrow, where R1 retics undergo profound rearrangements through well characterized mechanisms, such as proteolysis of cytoplasmic proteins via the polyubiquitylation/proteasome pathway, autophagy of intracellular organelles and a vesicle-based mechanism for the reduction of membrane surface area. The second maturation step starts when R1 retics exit the bone marrow and enter the circulation as R2 retics, which, through processes that are still largely unknown, lose additional membrane surface area and cell volume and selected types of proteins. Our work is focused on understanding how R2 retics mature. R1 retics, during their maturation, release exosomes in which the transferrin receptor and membrane raft proteins and lipids are found, while Band 3 and membrane- skeleton proteins are missing. We asked if a similar mechanism occurred in the terminal maturation of R2 retics and if membrane rafts were involved in the process. To this purpose, we isolated R2 retics by positive immune-magnetic sorting, and compared them with mature RBCs from the same donor to analyse membrane raft proteins and lipids content. Results demonstrate that the contents of Band 3 and spectrin, which remains constant with the maturation of R1 retics, decrease in the transition from R2 retics to RBCs. The relative abundance of two membrane raft protein markers, flotillin-2 and stomatin, with respect to Band 3, was then analysed. While flotillin-2 appears to be lost in a disproportionate manner with respect to Band 3, stomatin also decreases but in a statistically not significant way from R2 retics to RBCs. The different behaviour of these two protein markers of membrane rafts has been interpreted as evidence in support of the model that describes membrane rafts as heterogeneous entities in the membrane. This heterogeneity would be lost when membrane rafts are isolated as detergent-resistant membrane (DRM) using the standard protocol for raft preparation. Thus, flotillin-containing rafts would be selectively lost, whereas stomatin-containing rafts, and probably other subclasses of rafts, would be selectively retained in the maturation of R2 retics to RBCs. In fact, in support of the view that only certain membrane rafts may be lost from R2 retics, came the results of high resolution lipidomics analysis that showed enrichment, in the maturation of R2 retics to RBCs, of those lipids which are typically abundant in membrane rafts (sphingomyelin and cholesterol). These results highlight the important role that rafts will play in the membrane of mature RBCs. Our hypothesis is that membrane rafts contribute to the anchoring of the lipid bilayer to the membrane-skeleton, probably by creating electrostatic interactions with spectrin. The retention of specific subclasses of membrane rafts in the RBCs would, therefore, contribute to confer stability to a fragile cell-type that is subjected to intense mechanical stress during the 170,000 passages in the vascular system it experiences during its 120 days of circulatory life. Frontiers research in present times is challenged by difficulties in trying to propagate ad cultivate in vitro RBCs from stem cells for transfusion purposes. Blood donated for transfusion is a limited resource, and cultured RBCs would have several advantages such as reduced risk of transmitting infections and of triggering immunogenic reactions. Exploring the basic mechanisms underlying the membrane remodelling of retics that leads to their complete maturation to RBCs could help finding the right culture conditions and potentially revolutionize transfusion medicine.
I globuli rossi (GR) di mammifero sono cellule anucleate, prive di organelli intracellulari e con una peculiare forma a disco biconcavo. Una struttura chiamata membrano-scheletro, ancorata al versante citoplasmatico della membrana plasmatica, conferisce ai GR deformabilità e robustezza necessarie a sopportare gli stress meccanici che incontrano nel circolo. Mediante l’eritropoiesi i precursori eritroidi proliferano e differenziano nel midollo osseo fino allo stadio di eritroblasto ortocromatico che, con l’espulsione del nucleo, si trasforma in reticolocita (retic). I retic vanno incontro a due processi di maturazione. Il primo avviene nel midollo osseo, dove i cosiddetti retic R1 perdono gli organelli intracellulari, parti di membrana plasmatica e specifiche proteine attraverso processi di autofagia, proteolisi poli-ubiquitinazione/proteasoma-dipendente e formazione di Multi Vesicular Bodies con rilascio di esosomi. Il secondo processo avviene in circolo, dove i retic R2 perdono ulteriore volume e superficie cellulare e specifiche proteine. Questa fase maturativa avviene mediante meccanismi non noti e probabilmente diversi da quelli che guidano la maturazione dei retic R1, in quanto molti macchinari molecolari di differenziamento sono andati esaurendosi nella prima fase. Quindi, la maturazione dei retic R2 non sarebbe spontanea e si pensa che la milza abbia un ruolo attivo nel processo. In questo lavoro di tesi abbiamo valutato se i cosiddetti membrane rafts siano selettivamente rilasciati con le porzioni di membrana che sono perse con la maturazione dei retic R2 a GR. I membrane rafts sono regioni della membrana arricchite in colesterolo, sfingolipidi e specifiche proteine. Essi sono in parte persi con gli esosomi durante la maturazione dei retic R1 e sembrano esserlo anche durante l’invecchiamento dei GR in circolo. Abbiamo quindi ipotizzato che possano esserlo anche nella maturazione dei retic R2. Abbiamo isolato da donatori sani i retic R2 utilizzando un metodo immunomagnetico, e ne abbiamo confrontato le proprietà di membrana con quelle dei GR maturi degli stessi donatori. Due marcatori proteici dei membrane rafts, flotillina-2 e stomatina, sono stati quantificati mediante Western blotting e normalizzati sul contenuto di Banda 3, la proteina di membrana più abbondante del GR. Inoltre, marcatori lipidici dei raft, colesterolo e sfingolipidi, sono stati analizzati mediante lipidomica. Mentre la flotillina-2 ha mostrato una diminuzione significativa in rapporto alla Banda 3 nel passaggio da retic a GR, la stomatina ha mostrato una diminuzione meno cospicua e non statisticamente significativa. Ciò deporrebbe a favore della perdita selettiva di membrane rafts, o almeno di una classe di raft contenenti flotillina-2. Tuttavia, l’analisi lipidomica ha mostrato un incremento significativo di colesterolo e sfingolipidi relativo ai lipidi totali nei GR rispetto ai retic, indicando che i membrane rafts sono arricchiti nella membrana dei GR maturi rispetto ai retic. Sebbene i dati sui marcatori flotillina-2 e stomatina non siano fra loro concordi, la perdita selettiva di un marker come la flotillina-2 in concomitanza con l’arricchimento dei lipidi tipici dei rafts, sostiene l’ipotesi dell’eterogeneità dei membrane rafts, con alcune classi, come quelle contenenti flotillina-2, che sarebbero selettivamente perse ed altre (stomatina) mantenute. I risultati sono in accordo con l’ipotesi che una delle funzioni dei membrane rafts sia quella di stabilizzare e rafforzare il legame tra il doppio strato lipidico e il membrano-scheletro, conferendo al GR ulteriore stabilità e resistenza agli stress meccanici. La ricerca mira oggi a produrre GR coltivati a fini trasfusionali, ma si scontra con la difficoltà di maturazione dei retic. Comprendere i meccanismi molecolari di base che guidano questa maturazione aiuterebbe a trovare le condizioni ottimali di coltivazione e a potenzialmente rivoluzionare la medicina trasfusionale.
La maturazione finale dei reticolociti umani circolanti: un approccio mediante lipidomica e Western blotting quantitativo
CARDONE, SIMONA
2019/2020
Abstract
The reticulocyte (retic) is the immediate precursor of a red blood cell (RBC). It lacks the nucleus (in mammals) and is still immature, because it has to lose volume and surface area before attaining the characteristic shape of a RBC: the biconcave discocyte. Two main steps are needed to achieve this morphology. The first occurs in the bone marrow, where R1 retics undergo profound rearrangements through well characterized mechanisms, such as proteolysis of cytoplasmic proteins via the polyubiquitylation/proteasome pathway, autophagy of intracellular organelles and a vesicle-based mechanism for the reduction of membrane surface area. The second maturation step starts when R1 retics exit the bone marrow and enter the circulation as R2 retics, which, through processes that are still largely unknown, lose additional membrane surface area and cell volume and selected types of proteins. Our work is focused on understanding how R2 retics mature. R1 retics, during their maturation, release exosomes in which the transferrin receptor and membrane raft proteins and lipids are found, while Band 3 and membrane- skeleton proteins are missing. We asked if a similar mechanism occurred in the terminal maturation of R2 retics and if membrane rafts were involved in the process. To this purpose, we isolated R2 retics by positive immune-magnetic sorting, and compared them with mature RBCs from the same donor to analyse membrane raft proteins and lipids content. Results demonstrate that the contents of Band 3 and spectrin, which remains constant with the maturation of R1 retics, decrease in the transition from R2 retics to RBCs. The relative abundance of two membrane raft protein markers, flotillin-2 and stomatin, with respect to Band 3, was then analysed. While flotillin-2 appears to be lost in a disproportionate manner with respect to Band 3, stomatin also decreases but in a statistically not significant way from R2 retics to RBCs. The different behaviour of these two protein markers of membrane rafts has been interpreted as evidence in support of the model that describes membrane rafts as heterogeneous entities in the membrane. This heterogeneity would be lost when membrane rafts are isolated as detergent-resistant membrane (DRM) using the standard protocol for raft preparation. Thus, flotillin-containing rafts would be selectively lost, whereas stomatin-containing rafts, and probably other subclasses of rafts, would be selectively retained in the maturation of R2 retics to RBCs. In fact, in support of the view that only certain membrane rafts may be lost from R2 retics, came the results of high resolution lipidomics analysis that showed enrichment, in the maturation of R2 retics to RBCs, of those lipids which are typically abundant in membrane rafts (sphingomyelin and cholesterol). These results highlight the important role that rafts will play in the membrane of mature RBCs. Our hypothesis is that membrane rafts contribute to the anchoring of the lipid bilayer to the membrane-skeleton, probably by creating electrostatic interactions with spectrin. The retention of specific subclasses of membrane rafts in the RBCs would, therefore, contribute to confer stability to a fragile cell-type that is subjected to intense mechanical stress during the 170,000 passages in the vascular system it experiences during its 120 days of circulatory life. Frontiers research in present times is challenged by difficulties in trying to propagate ad cultivate in vitro RBCs from stem cells for transfusion purposes. Blood donated for transfusion is a limited resource, and cultured RBCs would have several advantages such as reduced risk of transmitting infections and of triggering immunogenic reactions. Exploring the basic mechanisms underlying the membrane remodelling of retics that leads to their complete maturation to RBCs could help finding the right culture conditions and potentially revolutionize transfusion medicine.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/11941