The interest of the scientific community towards PINK1 (PTEN-induced kinase 1) has been steadily growing in the last decades since 2004, when it was discovered as one of the main causative genes of autosomal recessive Parkinson’s disease (PD). PINK1 encodes a serine/threonine mitochondrial kinase, which plays a crucial role in the protection from oxidative stress, mitochondrial damage and cell death through mechanisms such as mitophagy, regulation of calcium homeostasis and phosphorylation of anti-apoptotic proteins. Several unexpected functions of this protein have been recently reported beyond neuroprotection in biochemical pathways involved in viral infection, inflammation, and, mostly, cancer. The aim of my work was to investigate the novel hypothesis that PINK1 may counteract oxidative stress and contribute to neuroprotection by regulating the metabolism of the L-serine, involved in the antioxidant activity and in the regulation of synaptic plasticity. The rationale behind this hypothesis was based on some recent findings: cellular and animal models lacking functional PINK1 are compatible with a scenario of L-serine depletion, as they show increased oxidative stress, impaired dopamine release and synaptic functioning; loss of DJ-1, another protein mutated in Parkinson’s disease, counteracts oxidative stress by modulating L-serine biosynthesis, although the underlying mechanisms of this modulation are unknown; a preliminary study, performed on a cohort of advanced PD patients, showed that D-serine (racemic form of L-serine) adjuvant treatment alleviates behavioral as well as motor symptoms in Parkinson’s disease; finally, compounds like D-serine, which allosterically modulate NMDAR-mediated neurotransmission as full agonists, have been found to alleviate PD symptoms by enhancing dopamine release and synthesis within the striatum. In order to validate the hypothesis of the crosstalk between PINK1 and serine metabolism, transgenic cell lines lacking functional PINK1 have been generated and characterized. These cell lines were an essential tool to verify whether the absence of PINK1 modified the response of serine biosynthesis to starvation of serine and glycine and whether it affected the redox state of the cells, after selective starvation.
L'interesse della comunità scientifica verso il PINK1 (chinasi indotta da PTEN 1) è stato in costante crescita negli ultimi decenni dal 2004, quando è stato scoperto come uno dei principali geni causali del morbo di Parkinson autosomico recessivo (PD). PINK1 codifica per una serina/treonina chinasi mitocondriale, che svolge un ruolo cruciale nella protezione dallo stress ossidativo, dal danno mitocondriale e dalla morte cellulare attraverso meccanismi come la mitofagia, la regolazione dell'omeostasi del calcio e la fosforilazione delle proteine antiapoptotiche. Diverse funzioni inaspettate di questa proteina sono state recentemente segnalate oltre alla neuroprotezione in percorsi biochimici coinvolti in infezioni virali, infiammazioni e, soprattutto, cancro. Lo scopo del mio lavoro è stato quello di indagare la nuova ipotesi che PINK1 possa contrastare lo stress ossidativo e contribuire alla neuroprotezione regolando il metabolismo della L-serina, coinvolta nell'attività antiossidante e nella regolazione della plasticità sinaptica. La logica alla base di questa ipotesi si basa su alcune recenti scoperte: i modelli cellulari e animali privi di PINK1 funzionale sono compatibili con uno scenario di esaurimento della L-serina, in quanto mostrano un aumento dello stress ossidativo, una riduzione del rilascio di dopamina e del funzionamento sinaptico; la perdita di DJ-1, un'altra proteina mutata nel morbo di Parkinson, contrasta lo stress ossidativo modulando la biosintesi della L-serina, anche se i meccanismi sottostanti di questa modulazione sono sconosciuti; uno studio preliminare, eseguito su una coorte di pazienti con PD avanzata, ha dimostrato che il trattamento adiuvante D-serina (forma racemica di L-serina) allevia i sintomi comportamentali e motori nel morbo di Parkinson; infine, composti come la D-serina, che allostericamente modulano la neurotrasmissione mediata da NMDAR come agonisti completi, sono stati trovati per alleviare i sintomi della PD migliorando il rilascio di dopamina e la sintesi all'interno dello striato. Al fine di convalidare l'ipotesi della diafonia tra PINK1 e il metabolismo della serina, sono state generate e caratterizzate linee cellulari transgeniche prive di PINK1 funzionale. Queste linee cellulari sono state uno strumento essenziale per verificare se l'assenza di PINK1 ha modificato la risposta della biosintesi della serina in assenza di serina e glicina e se ha influenzato lo stato redox delle cellule, dopo la fame selettiva.
Regulation of Serine metabolism: a novel function of PINK1, an eclectic protein mutated in Parkinson disease. (Regolazione del metabolismo della serina: una nuova funzione PINK1, una proteina poliedrica mutata nella malattia di Parkinson)
BONTA', ALESSANDRO
2019/2020
Abstract
The interest of the scientific community towards PINK1 (PTEN-induced kinase 1) has been steadily growing in the last decades since 2004, when it was discovered as one of the main causative genes of autosomal recessive Parkinson’s disease (PD). PINK1 encodes a serine/threonine mitochondrial kinase, which plays a crucial role in the protection from oxidative stress, mitochondrial damage and cell death through mechanisms such as mitophagy, regulation of calcium homeostasis and phosphorylation of anti-apoptotic proteins. Several unexpected functions of this protein have been recently reported beyond neuroprotection in biochemical pathways involved in viral infection, inflammation, and, mostly, cancer. The aim of my work was to investigate the novel hypothesis that PINK1 may counteract oxidative stress and contribute to neuroprotection by regulating the metabolism of the L-serine, involved in the antioxidant activity and in the regulation of synaptic plasticity. The rationale behind this hypothesis was based on some recent findings: cellular and animal models lacking functional PINK1 are compatible with a scenario of L-serine depletion, as they show increased oxidative stress, impaired dopamine release and synaptic functioning; loss of DJ-1, another protein mutated in Parkinson’s disease, counteracts oxidative stress by modulating L-serine biosynthesis, although the underlying mechanisms of this modulation are unknown; a preliminary study, performed on a cohort of advanced PD patients, showed that D-serine (racemic form of L-serine) adjuvant treatment alleviates behavioral as well as motor symptoms in Parkinson’s disease; finally, compounds like D-serine, which allosterically modulate NMDAR-mediated neurotransmission as full agonists, have been found to alleviate PD symptoms by enhancing dopamine release and synthesis within the striatum. In order to validate the hypothesis of the crosstalk between PINK1 and serine metabolism, transgenic cell lines lacking functional PINK1 have been generated and characterized. These cell lines were an essential tool to verify whether the absence of PINK1 modified the response of serine biosynthesis to starvation of serine and glycine and whether it affected the redox state of the cells, after selective starvation.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/12090