Nucleic acids have the potential to fold in secondary structures and repetitive sequences of DNA can fold in so called non-B structures, known since the late 1950s, held together through non-Watson-Crick hydrogen bonds between nucleobases. This thesis focus on guanilyc acid derivatives and their the ability to self-aggregate. Guanilyc acid forms four-stranded and right handed helices in a model where guanines are held together by Hoogsteen hydrogen base-pairing to form co-planar G-quartets that are further stabilized by interactions between positively charged ions, with a remarked preference for monovalent cations (K+ > Na+ > Li+, in the order). G-quadruplexes (G4s) are implicated in numerous important cellular processes, in particular transcription, but also in translation and maintenance of genome stability. All these functions of G4s in DNA and in RNA, including telomere maintenance, transcription, translation, replication, DNA damage response, genome rearrangement and epigenetic regulation, present opportunities for anti-cancer treatments. In fact, in the past 20 years various small molecules were designed and reported to interact with DNA or RNA G-quadruplexes, from both natural products and synthetic compounds. This thesis focuses on Pyridostatin (PDS), which is one of the most famous G4 binder designed to maximize the interactions with these structures. From preliminary studies seems that PDS has an intrinsic chemical instability, as demonstrated by hydrolytic and enzymatic experiments. To overcome this issue, we suggest a chemical modification of the central scaffold, through substitution of amide with thio-amide, which shouldn’t affect stabilization properties of PDS towards G4s. Moreover, to further investigate the behavior of this molecule in cellular environment, we propose the conjugation of PDS to different fluorescent tags based on acridine scaffold.
Sequenze di acidi nucleici ricche in guanine sono caratterizzate dalla capacità di formare strutture secondarie del DNA, note con il nome di G-quadruplex (G4). Queste strutture sono tenute insieme da legami a idrogeno, tra nucleobasi, di tipo non Watson-Crick, formando strutture co-planari ulteriormente stabilizzate da interazioni con ioni carichi positivamente, con una marcata preferenza per i cationi monovalenti. I G4 sono coinvolti in numerosi processi cellulari, in particolare nel mantenimento dei telomeri, nella trascrizione, traduzione, replicazione, risposta al danno del DNA, riarrangiamento del genoma e regolazione epigenetica e presentano quindi un’opportunità per sviluppare nuove terapie anti-cancro. A questo scopo, negli ultimi 20 anni sono state progettate varie piccole molecole che interagiscono con sequenze di G4, sia nel DNA che nell’RNA, derivanti sia da prodotti naturali che da composti sintetici. Questa tesi è incentrata sulla Piridostatina (PDS), che è uno dei leganti G4 maggiormente utilizzati, progettato per massimizzare le interazioni con queste strutture. Tuttavia, da diversi studi preliminari è emerso la PDS è caratterizzata da una significativa instabilità chimica, che è stata qui dimostrata attraverso studi idrolitici ed enzimatici. Per superare tale svantaggio, suggeriamo una piccola modifica strutturale, ovvero la sostituzione dei legami ammidici con delle tio-ammidi. Questo cambiamento non dovrebbe influenzare la proprietà leganti della PDS verso i G4. Inoltre, per valutare in maniera più efficace l’effetto di tali molecole in ambiente fisiologico, abbiamo progettato una nuova serie di coniugati della PDS con altri leganti fluorescenti, basati sullo scaffold della acridina, caratterizzati da intensa emissione a 500 nm, che permettono di monitorare e visualizzare i substrati utilizzati anche in un contesto complesso come quello biologico.
L'inesplorata instabilità della Piridostatina
TRIVERI, ALICE
2019/2020
Abstract
Nucleic acids have the potential to fold in secondary structures and repetitive sequences of DNA can fold in so called non-B structures, known since the late 1950s, held together through non-Watson-Crick hydrogen bonds between nucleobases. This thesis focus on guanilyc acid derivatives and their the ability to self-aggregate. Guanilyc acid forms four-stranded and right handed helices in a model where guanines are held together by Hoogsteen hydrogen base-pairing to form co-planar G-quartets that are further stabilized by interactions between positively charged ions, with a remarked preference for monovalent cations (K+ > Na+ > Li+, in the order). G-quadruplexes (G4s) are implicated in numerous important cellular processes, in particular transcription, but also in translation and maintenance of genome stability. All these functions of G4s in DNA and in RNA, including telomere maintenance, transcription, translation, replication, DNA damage response, genome rearrangement and epigenetic regulation, present opportunities for anti-cancer treatments. In fact, in the past 20 years various small molecules were designed and reported to interact with DNA or RNA G-quadruplexes, from both natural products and synthetic compounds. This thesis focuses on Pyridostatin (PDS), which is one of the most famous G4 binder designed to maximize the interactions with these structures. From preliminary studies seems that PDS has an intrinsic chemical instability, as demonstrated by hydrolytic and enzymatic experiments. To overcome this issue, we suggest a chemical modification of the central scaffold, through substitution of amide with thio-amide, which shouldn’t affect stabilization properties of PDS towards G4s. Moreover, to further investigate the behavior of this molecule in cellular environment, we propose the conjugation of PDS to different fluorescent tags based on acridine scaffold.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/12294