Decellularization is the process of removing the native cells from a tissue, leaving behind an intact 3D extracellular matrix that preserves the bioactivity and mechanics of the original tissue. The aim of the present study was to develop a simple method for the production of small-scale decellularized liver scaffolds, analyse the efficiency of decellularization and characterize the maintenance of the 3D structure and biochemical composition of the acellular matrix. The secondary purpose was to investigate the cytocompatibility of the scaffolds and test the efficiency of different cell-seeding techniques in promoting cell attachment, growth and distribution within the matrix under static conditions. The results collected in the first part of the study showed that the decellularization protocol was highly effective: no nuclei were visible after staining and DNA was significantly reduced in the scaffold below the recommended threshold of 50 ng/mg. Also, the low concentration SDS and the short exposure time to the detergent made the extracellular matrix able to retain its original 3D architecture and the essential proteins of the hepatic tissue. The focus was then shifted on the ability of the decellularized scaffolds to support cell growth: no cytotoxic effect was reported on HepG2 cells after MTT assay and the comparison between the above-mentioned seeding methods showed that a significant increase in DNA content and mitochondrial activity of cells were detected in the scaffolds seeded by multiple injections (Method 2). Moreover, cells maintained their intact morphology and expressed β1-integrin as a proof of a well-established cell-matrix interaction. On the other hand, however, none of the seeding strategies tested allowed the cells to migrate across the entire depth of the scaffold due to the limited efficiency given by a static culture itself. For this reason, it is important to develop alternative systems for a better 3D cell distribution employing perfusion bioreactors or rotating culture flasks under dynamic conditions.
La decellularizzazione è il processo di rimozione delle cellule native da un tessuto, lasciando intatta la matrice extracellulare e preservando le sue proprietà meccaniche e bioattive. Lo scopo di questo lavoro è stato quello di sviluppare un metodo semplificato per la produzione di scaffold epatici in piccola scala, analizzando l’efficienza del processo di decellularizzazione e caratterizzando la struttura tridimensionale e la composizione biochimica della matrice decellularizzata. In secondo luogo, l’obiettivo è stato quello di valutare la citocompatibilità degli scaffold prodotti e testare l’efficacia di diversi metodi di semina cellulare nel promuovere l’adesione, crescita e distribuzione delle cellule all’interno della matrice in condizioni statiche. I risultati ottenuti nella prima parte del progetto hanno dimostrato che il protocollo di decellularizzazione era stato decisamente efficace: nessun nucleo era visibile all’osservazione istologica e il DNA era significativamente ridotto negli scaffold al di sotto della soglia raccomandata di 50 ng/mg. Inoltre, la bassa concentrazione di SDS ed il breve tempo di esposizione al detergente hanno permesso alla matrice extracellulare di mantenere la sua originale architettura e le proteine del tessuto epatico. L'attenzione è stata infine posta sulla capacità dei campioni decellularizzati di favorire la crescita cellulare: nessun effetto citotossico è stato riportato sulle Hepg2 dopo il test MTT e, dal confronto tra i metodi di semina sopra citati, si è registrato un aumento significativo del contenuto di DNA e dell'attività mitocondriale negli scaffold seminati mediante iniezioni multiple (Metodo 2). Inoltre, le cellule hanno mantenuto intatta la loro morfologia ed esprimevano la β1-integrina, a prova di una ben consolidata interazione tra cellule e matrice. Tuttavia, però, nessuna delle strategie di semina testate ha permesso alle cellule di distribuirsi in modo uniforme attraverso tutto lo spessore dello scaffold a causa dei limiti intrinseci della coltura statica stessa. Per questo motivo, è importante sviluppare sistemi di coltura alternativi per migliorare la distribuzione delle cellule all’interno delle matrici tridimensionali, ricorrendo a bioreattori o sistemi di coltura rotanti in condizioni dinamiche.
Sviluppo e caratterizzazione di uno scaffold epatico decellularizzato come piattaforma 3D per colture di epatociti
BRAMBILLA, SZANDRA
2019/2020
Abstract
Decellularization is the process of removing the native cells from a tissue, leaving behind an intact 3D extracellular matrix that preserves the bioactivity and mechanics of the original tissue. The aim of the present study was to develop a simple method for the production of small-scale decellularized liver scaffolds, analyse the efficiency of decellularization and characterize the maintenance of the 3D structure and biochemical composition of the acellular matrix. The secondary purpose was to investigate the cytocompatibility of the scaffolds and test the efficiency of different cell-seeding techniques in promoting cell attachment, growth and distribution within the matrix under static conditions. The results collected in the first part of the study showed that the decellularization protocol was highly effective: no nuclei were visible after staining and DNA was significantly reduced in the scaffold below the recommended threshold of 50 ng/mg. Also, the low concentration SDS and the short exposure time to the detergent made the extracellular matrix able to retain its original 3D architecture and the essential proteins of the hepatic tissue. The focus was then shifted on the ability of the decellularized scaffolds to support cell growth: no cytotoxic effect was reported on HepG2 cells after MTT assay and the comparison between the above-mentioned seeding methods showed that a significant increase in DNA content and mitochondrial activity of cells were detected in the scaffolds seeded by multiple injections (Method 2). Moreover, cells maintained their intact morphology and expressed β1-integrin as a proof of a well-established cell-matrix interaction. On the other hand, however, none of the seeding strategies tested allowed the cells to migrate across the entire depth of the scaffold due to the limited efficiency given by a static culture itself. For this reason, it is important to develop alternative systems for a better 3D cell distribution employing perfusion bioreactors or rotating culture flasks under dynamic conditions.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/12309