In this Thesis, it was investigated a method to glycosylate the antigenic recombinant protein alpha-E50I60, with the aim of obtaining potential glycoconjugate vaccines against tuberculosis. Tuberculosis is a disease caused by Mycobacterium tuberculosis (MTB), which mainly infects the lung. Most affected individuals are asymptomatic, MTB remains in a state of quiescence for several years and only 10% of affected individuals develop the disease. Within the host organism, M. tuberculosis stimulates the immune system. However, MTB is a difficult pathogen to eradicate, as it has developed strategies to survive within macrophages. Vaccination is a most successful prophylactic tool for reducing morbidity and mortality from infection. Bacilli Calmette-Guérin (BCG) is the only approved vaccine against tuberculosis, administered in children, but not able to protect adolescents and adults, so several research groups are working to develop more effective anti-TB vaccines, where the main candidates are proteins produced by MTB. The recombinant protein used in this thesis was alpha-E50I60, which has the antigenic sequence of the Ag85C protein (produced by MTB) fused to the elastin-like recombinamer sequence. When the temperature is higher than the transition temperature (15°C), they are able to self-assemble, resulting in nanoparticles that expose the antigenic sequence on the surface. In this work, alpha-E50I60 was glycosylated in order to increase up-take by APCs, with a desired glycosylation yield of 40-60%, to obtain non glycosylated epitopes that could induce a T-cell response. Monosaccharides, disaccharides, trisaccharides and tetrasaccharides were used to glycosylate the lysines present on both the soluble RNase A protein (10 Lys), with the aim of evaluating sugar reactivity and glycosylation efficiency, and on the alpha-E50I60 protein (1 Lys). The sugar were previously activated. In the case of RNase A, the glycosylation yield was 100%. For alpha-E50I60, glycosylation yield was greater than 60% for mono- and disaccharide; around 40% for trisaccharide; less than 40% for tetrasaccharide. For both RNase A and alpha-E50I60 protein, the glycosylation reaction took place in sodium tetraborate buffer; in particular, for alpha-E50I60, 30% acetonitrile was added to the buffer to avoid micelle formation during glycosylation reaction. The reaction was tested at 25°C (for both RNase A and alpha-E50I60 protein) and 10°C (for alpha-E50I60 protein). In the glycosylation of RNase A, the molar ratio sugar/protein used was 100:1; whereas alpha-E50I60, having only one Lys present in the epitope, the reactivity is lower, so the molar ratio was increased. The glycosylated proteins were analyzed by HPLC-MS. Except for tetrasaccharide, the glycosylation reactions gave good yields; in particular, for mono- and disaccharide (that provided a glycosylation degree higher than 60%), non-glycosylated recombinant protein can be added to obtain, after self-assembly, nanoparticles with the appropriate degree of glycosylation. These neo-glycoproteins will be tested using surface plasmon resonance (SPR) at the Complutense University of Madrid, to evaluate the ability of these compounds for the binding with mannose receptors.
In questo lavoro di Tesi è stato sviluppato un metodo per glicosilare la proteina ricombinante alfa-E50I60, al fine di ottenere un potenziale nanovaccino contro la tubercolosi. La tubercolosi è una patologia causata dal Mycobacterium tuberculosis (MTB), il quale infetta principalmente i polmoni. La maggior parte dei soggetti affetti sono asintomatici, ovvero MTB rimane in uno stato di quiescenza per diversi anni e solo il 10% dei soggetti affetti sviluppa la patologia. Una volta entrato in contatto con l’organismo ospite, il M. tuberculosis stimola il sistema immunitario. Ciononostante, MTB è un patogeno difficile da eradicare in quanto è in grado di attuare diversi meccanismi che gli permettono di sopravvivere all’interno dei macrofagi. La vaccinazione è uno strumento profilattico di grande importanza per ridurre la morbilità e la mortalità da parte delle infezioni. Il BCG è il solo vaccino approvato contro la tubercolosi, somministrato nei bambini, ma non in grado di proteggere dopo 10/15 anni dalla stessa, per cui si sta ancora lavorando allo sviluppo di vaccini più efficienti, dove i candidati principali sono le proteine prodotte dal M. tuberculosis. La proteina ricombinante utilizzata in questo progetto di tesi è stata la alfa-E50I60, la quale presenta la sequenza antigenica della proteina Ag85C (prodotta da MTB) fusa alla sequenza della elastin-like recombinamer. Quando la temperatura è maggiore di quella di transizione (15°C), esse sono in grado di auto-assemblarsi, ottenendo delle nanoparticelle che espongono sulla superficie la sequenza antigenica. In questo lavoro l'alfa-E50I60 è stata glicosilata al fine di aumentare l’up-take da parte delle APC, con una resa di glicosilazione desiderata tra il 40 e il 60%, per mantenere un certo numero di epitopi non glicosilati che possano indurre una risposta da parte delle cellule T. Sono stati utilizzati monosaccaridi, disaccaridi, trisaccaridi e tetrasaccaridi per glicosilare le lisine presenti sia sulla proteina solubile RNase A (10 Lys), con lo scopo di valutare la reattività degli zuccheri e l’efficienza di glicosilazione, che sulla proteina alfa-E50I60 (1 Lys). Gli zuccheri sono stati precedentemente attivati. Nel caso della RNase A, la resa di glicosilazione è stata del 100%. Per l'alfa-E50I60, sono state ottenute delle rese di glicosilazione maggiori del 60% per il mono- e il disaccaride; intorno al 40% per il trisaccaride; inferiore al 40% per il tetrasaccaride. Sia per la RNase A che per l'alfa-E50I60, la reazione di glicosilazione è avvenuta in tampone tetraborato di sodio; in particolare, per la -E50I60 è stato aggiunto il 30% di acetonitrile al tampone, per evitare la formazione delle micelle durante la reazione di glicosilazione. La reazione è stata testata a 25°C (sia per la RNase A che per la alfa-E50I60) e a 10°C (solo per la alfa-E50I60). Nella glicosilazione della RNase A, il rapporto molare zucchero/proteina utilizzato è stato di 100:1; mentre l’alfa-E50I60 avendo una sola Lys presente nell’epitopo, la reattività è inferiore, quindi il rapporto molare è stato aumentando. Le proteine glicosilate sono state analizzate in HPLC-MS. Eccetto per il tetrasaccaride, le reazioni di glicosilazione hanno fornito delle buone rese; in particolare, per il mono- e disaccaride, per i quali la resa è stata maggiore del 60%, è possibile aggiungere altra proteina ricombinante non glicosilata per ottenere il grado di glicosilazione desiderato dopo auto-assemblaggio delle proteine e la formazione delle nanoparticelle. Queste neo-glicoproteine verranno saggiate mediante la risonanza plasmonica di superficie (SPR), per valutare la loro capacità di interagire con i recettori del mannosio, presso l’Università Complutense di Madrid.
Sintesi di potenziali nanovaccini contro la tubercolosi mediante glicosilazione della proteina alfa-E50I60 con manno-derivati.
SERGIO, SARA
2019/2020
Abstract
In this Thesis, it was investigated a method to glycosylate the antigenic recombinant protein alpha-E50I60, with the aim of obtaining potential glycoconjugate vaccines against tuberculosis. Tuberculosis is a disease caused by Mycobacterium tuberculosis (MTB), which mainly infects the lung. Most affected individuals are asymptomatic, MTB remains in a state of quiescence for several years and only 10% of affected individuals develop the disease. Within the host organism, M. tuberculosis stimulates the immune system. However, MTB is a difficult pathogen to eradicate, as it has developed strategies to survive within macrophages. Vaccination is a most successful prophylactic tool for reducing morbidity and mortality from infection. Bacilli Calmette-Guérin (BCG) is the only approved vaccine against tuberculosis, administered in children, but not able to protect adolescents and adults, so several research groups are working to develop more effective anti-TB vaccines, where the main candidates are proteins produced by MTB. The recombinant protein used in this thesis was alpha-E50I60, which has the antigenic sequence of the Ag85C protein (produced by MTB) fused to the elastin-like recombinamer sequence. When the temperature is higher than the transition temperature (15°C), they are able to self-assemble, resulting in nanoparticles that expose the antigenic sequence on the surface. In this work, alpha-E50I60 was glycosylated in order to increase up-take by APCs, with a desired glycosylation yield of 40-60%, to obtain non glycosylated epitopes that could induce a T-cell response. Monosaccharides, disaccharides, trisaccharides and tetrasaccharides were used to glycosylate the lysines present on both the soluble RNase A protein (10 Lys), with the aim of evaluating sugar reactivity and glycosylation efficiency, and on the alpha-E50I60 protein (1 Lys). The sugar were previously activated. In the case of RNase A, the glycosylation yield was 100%. For alpha-E50I60, glycosylation yield was greater than 60% for mono- and disaccharide; around 40% for trisaccharide; less than 40% for tetrasaccharide. For both RNase A and alpha-E50I60 protein, the glycosylation reaction took place in sodium tetraborate buffer; in particular, for alpha-E50I60, 30% acetonitrile was added to the buffer to avoid micelle formation during glycosylation reaction. The reaction was tested at 25°C (for both RNase A and alpha-E50I60 protein) and 10°C (for alpha-E50I60 protein). In the glycosylation of RNase A, the molar ratio sugar/protein used was 100:1; whereas alpha-E50I60, having only one Lys present in the epitope, the reactivity is lower, so the molar ratio was increased. The glycosylated proteins were analyzed by HPLC-MS. Except for tetrasaccharide, the glycosylation reactions gave good yields; in particular, for mono- and disaccharide (that provided a glycosylation degree higher than 60%), non-glycosylated recombinant protein can be added to obtain, after self-assembly, nanoparticles with the appropriate degree of glycosylation. These neo-glycoproteins will be tested using surface plasmon resonance (SPR) at the Complutense University of Madrid, to evaluate the ability of these compounds for the binding with mannose receptors.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/12318