Nowadays, the Li-ion batteries are the most commercially mature energy storage technology. They are employed in several applications such as: consumer electronics, power networks, battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs), due to their higher energy density offered compared to the other recharging batteries. In order to ensure the increasing power demands of the electric load, the battery cells have to be connected in series and parallel creating battery modules. However, the manufacturing process tolerances and dissimilar operating conditions between the cells of the same module can originate cell-to-cell variations that compromise the overall performance or the safety of the module. Moreover, in the literature only a handful group of researches have analyzed the impact of unmatched cells on the performance and state of health (SOH) of parallel-connected battery modules. Therefore, the aim of this thesis is to investigate the effects of cell-to-cell heterogeneity within a parallel-connected battery module throughout high fidelity offline simulations, with the primary objective to understand how they could compromise the battery lifetime and safety. In the first part, the current inhomogeneity that occurs when unmatched cells are connected in parallel will be investigated in details, assuming that the initial cell-to-cell variations are due the tolerances during the electrodes manufacturing steps. Then, in the second part of the thesis, the impact of dissimilar cell temperatures due to the current inhomogeneity in the long term ill be evaluated. In particular, from the investigation it will result that the cells are subjected to different aging rates that forces the cells to experience very high current peaks which could potentially be damaging for the battery module. This work is the result of a collaborations with Prof. Simona Onori, an Assistant Professor at Stanford University in Energy Resources Engineering and Director of the Stanford Energy Control Lab, and with PhD Anirudh Allam. They have shared with us a battery pack simulator implemented in Matlab, based on an electrochemical model framework coupled with thermal and aging dynamics which had been used for the simulations. Moreover, Prof. Onori has provided an invaluable guidance on this work.
Analisi di sensitività e indagine dell'eterogeneità tra le celle per un pacco batterie agli ioni di Litio connesso in parallelo. Attualmente, le batterie agli ioni di litio sono considerate la tecnologia più commercialmente matura riguardati sistemi di accumulo dell’energia. Queste sono impiegate in molteplici settori, quali elettronica di consumo, reti elettriche, veicoli elettrici a batteria e veicoli ibridi, essendo in grado di fornire maggiore densità energetica rispetto alle altre batterie ricaricabili. Data la continua crescita della domanda di potenza da parte dei carichi elettrici, le singole celle devono essere collegate in serie o in parallelo in modo da soddisfare le loro richieste. Tuttavia, a causa delle tolleranze che si verificano nei processi di manifattura o delle condizione operative diverse tra le celle dello stesso modulo di batterie, si creano eterogeneità tra le celle che potrebbero compromettere le prestazioni e la sicurezza dell’intero modulo. Nella letteratura, solo un numero ristretto di ricerche ha analizzato l’impatto di celle non perfettamente identiche, sulle prestazioni e sullo stato di invecchiamento di pacchi batterie connessi in parallelo. Di conseguenza, lo scopo di questa tesi è quello di investigare l’effetto delle eterogeneità tra le celle, ricorrendo a simulazioni offline molto realistiche, con l’obbiettivo primario di capire sotto quali condizioni la vita e la sicurezza del pacco di batterie viene compromessa. In particolare, nella prima parte della tesi, verranno analizzate in dettaglio le disomogeneità nelle correnti erogate dalle celle, ipotizzando che le differenze tra le capacità iniziale di queste siano dovute a tolleranze all’interno processi produttivi degli elettrodi. Nella seconda parte, invece, verranno valutati gli effetti delle differenze di temperature tra le celle dovute alle diverse correnti erogate, nel lungo periodo. Dall’indagine risulterà che celle dello stesso modulo sono soggette a differenti velocità di invecchiamento, forzandole a subire picchi di correnti molto elevati che potrebbero essere dannosi per il modulo stesso. Questo lavoro è frutto di una collaborazione con la Prof. Simona Onori, una Assistant Professor presso la Stanford University in Energy Resources Engineering e direttrice dello Stanford Energy Control Lab, e con il dottorando Anirudh Allam. Grazie a questa cooperazione, abbiamo utilizzato il simulatore di pacchi di batterie implementato Matlab, da loro sviluppato, basato su un modello elettrochimico che tiene conto delle dinamiche termiche e di invecchiamento delle celle . Inoltre, la Prof. Onori ha fornito le linee guida per la realizzazione di questo lavoro.
Sensitivity analysis and cell-to-cell heterogeneity investigation of a Li-ion parallel-connected battery pack.
FASOLATO, SIMONE
2019/2020
Abstract
Nowadays, the Li-ion batteries are the most commercially mature energy storage technology. They are employed in several applications such as: consumer electronics, power networks, battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs), due to their higher energy density offered compared to the other recharging batteries. In order to ensure the increasing power demands of the electric load, the battery cells have to be connected in series and parallel creating battery modules. However, the manufacturing process tolerances and dissimilar operating conditions between the cells of the same module can originate cell-to-cell variations that compromise the overall performance or the safety of the module. Moreover, in the literature only a handful group of researches have analyzed the impact of unmatched cells on the performance and state of health (SOH) of parallel-connected battery modules. Therefore, the aim of this thesis is to investigate the effects of cell-to-cell heterogeneity within a parallel-connected battery module throughout high fidelity offline simulations, with the primary objective to understand how they could compromise the battery lifetime and safety. In the first part, the current inhomogeneity that occurs when unmatched cells are connected in parallel will be investigated in details, assuming that the initial cell-to-cell variations are due the tolerances during the electrodes manufacturing steps. Then, in the second part of the thesis, the impact of dissimilar cell temperatures due to the current inhomogeneity in the long term ill be evaluated. In particular, from the investigation it will result that the cells are subjected to different aging rates that forces the cells to experience very high current peaks which could potentially be damaging for the battery module. This work is the result of a collaborations with Prof. Simona Onori, an Assistant Professor at Stanford University in Energy Resources Engineering and Director of the Stanford Energy Control Lab, and with PhD Anirudh Allam. They have shared with us a battery pack simulator implemented in Matlab, based on an electrochemical model framework coupled with thermal and aging dynamics which had been used for the simulations. Moreover, Prof. Onori has provided an invaluable guidance on this work.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/12376