Superparamagnetic iron oxide nanoparticles (SPION) are widely used for biomedical applications, including magnetic resonance imaging (MRI), magnetic particle imaging (MPI), magnetic fluid hyperthermia (MFH), separation of biomolecules, and targeted drug and gene delivery. Among these, maghemite SPIONs are one of the most well studied iron oxide nanoparticles. However, due to their instability under physiological conditions, it is not possible to administrate in the body without surface modification. SPIONs coating with biocompatible layers is a method used to bypass this drawback. Reliable characterization of the coatings at the nanoscale is of critical importance for biomedical use. The research is based on previous studies performed by Cíntia Baptista Marques on SPIONs characterization. The aim of this work is to coat SPIONs with different coatings agent, characterize them in terms of hydrodynamic size, zeta potential and shape. In addition, studies on the colloidal stability of the coated nanoparticles were performed. The coated SPIONs were analysed in different solvents, different pH, different concentrations, and ratios between the coating agent and the SPIONs. Based on the results obtained, we conclude that we could formulate and characterize colloidally stable coated SPIONs with L-cysteine under physiological conditions. The sample’s solvent is DPBS 0.1 x and pH around 7. The hydrodynamic size of these coated SPIONs is around 100 nm and the PDI below 0.3 the zeta potential is below -30 mV. These nanoparticles could be applied for further studies on their fate in a physiological environment or as starting point for further conjugation with biomolecules, for instance to add targeting ability.
Le nanoparticelle superparamegnatiche di ossido di ferro (SPION) trovano numerosi e interessanti impieghi in campo biomedico, quali: risonanza magnetica (MRI), magnetic imaging (MPI) trattamenti magnetici con ipertermia (MFH), separzione di biomeolecole, target delivery di farmaci e geni. Gli SPIONs di maghemite sono tra le più studiate nanoparticelle di ossido di ferro. Tuttavia, a causa della loro instabilità nelle condizioni fisiologiche non è possibile somministrarli nel corpo senza modificare la superficie. Il coating degli SPIONs con materiali biocompatibili è una tecnica usata per aggirare questo svantaggio. Molto lavoro è ancora da fare per caratterizzare i coated SPIONs. Questo lavoro di ricerca è basato sugli studi fatti dalla supervisor Cíntia Baptista Marques sulla caratterizzazione degli SPIONs. Lo scopo di questa ricerca è quello di ricoprire gli SPIONs con differenti coatings agent, caratterizzare hydrodynamic size, zeta potential e forma. Dopodichè per i campioni più promettenti è possible effettuare studi di stabilità. In questo lavoro sono stati analizzati i coated SPIONs in differenti solventi, valori di pH, concentrazioni e rapporti tra coating agent e SPIONs. Grazie ai risultati ottenuti è possible concludere che sono stati formulati coated SPIONs stabili per almeno 37 giorni in condizioni fisiologiche. Il solvente è DPBS 0.1 x, il pH circa 7. Hydrodynamic size dei coated SPIONs è circa 100 nm, il PDI minore di 0.3 e lo zeta potential è minore di -30 mV. Questi risultati permettono di applicare questi coated SPIONs nello studio del destino delle naoparticelle nell’ambiente fisiologico, o come punto di partenza per la coniugazione di biomolecole, per avere specificità di targeting.
Coating SPIONs and nanoscale characterization Rivestimento e caratterizzazione di SPION per la coniugazione di biomolecule per il direzionamento attivo
STANCHIERI, MATTIA
2020/2021
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are widely used for biomedical applications, including magnetic resonance imaging (MRI), magnetic particle imaging (MPI), magnetic fluid hyperthermia (MFH), separation of biomolecules, and targeted drug and gene delivery. Among these, maghemite SPIONs are one of the most well studied iron oxide nanoparticles. However, due to their instability under physiological conditions, it is not possible to administrate in the body without surface modification. SPIONs coating with biocompatible layers is a method used to bypass this drawback. Reliable characterization of the coatings at the nanoscale is of critical importance for biomedical use. The research is based on previous studies performed by Cíntia Baptista Marques on SPIONs characterization. The aim of this work is to coat SPIONs with different coatings agent, characterize them in terms of hydrodynamic size, zeta potential and shape. In addition, studies on the colloidal stability of the coated nanoparticles were performed. The coated SPIONs were analysed in different solvents, different pH, different concentrations, and ratios between the coating agent and the SPIONs. Based on the results obtained, we conclude that we could formulate and characterize colloidally stable coated SPIONs with L-cysteine under physiological conditions. The sample’s solvent is DPBS 0.1 x and pH around 7. The hydrodynamic size of these coated SPIONs is around 100 nm and the PDI below 0.3 the zeta potential is below -30 mV. These nanoparticles could be applied for further studies on their fate in a physiological environment or as starting point for further conjugation with biomolecules, for instance to add targeting ability.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/12707