The aim of this thesis is studying Kir4.1 and BK channels role in cell migration, in U251 glioblastoma multiforme cell line, by means of electrophysiological recordings. Glioblastoma multiforme is the most aggressive and invasive tumor among cerebral neoplasms, and it is thus characterised by a 14-15 months life expectancy. Despite 3 decades of research no effective therapeutic strategies are available to date. For this reason, in order to develop new and effective therapeutic strategies, it is of extreme importance studying and gathering a more detailed knowledge on cell mechanisms underlying GBM migration. Electrophysiological recordings were carried out by utilising the perforated patch technique with the intention of studying cell currents in physiological conditions, without altering intracellular ions concentrations and thus avoiding intracellular dialysis. Cell migration was evaluated by means of the wound healing assay, consisting in scratching petri dishes. Bipolar shaped cells were recorded inside the scratch. Bipolar cells within the scratch, involved in migration, showed a depolarised resting membrane potential and a large input resistance, which are typical features of undifferentiated cells. Said cells also showed inward and outward rectifying currents. Thereafter, in order to characterise channels responsible for inward and outward currents, biophysical and pharmacological properties of such currents were analysed. Inward rectifying currents were completely blocked by local perfusion of barium; to identify outward rectifier currents, bipolar shaped cells were locally perfused with known Ca2+ -activated K+ channels blockers such as: clotrimazole, which blocks IK channels, TEA (tetraethylammonium) and iberiotoxin, which block BK channels. Thanks to the data acquired, which is in agreement with data previously published in literature, it was possible to identify Kir4.1 channels as the ones responsible for inward currents, and BK channels as the ones responsible for outward currents. Bipolar shaped cells were recorded after local perfusion with menthol in order to study calcium’s role in the migration process. Menthol is indeed an agonist of TRPM8, a cationic channel preferably permeable to Ca2+ ions. Perfusion with said agonist caused outward currents, whose calcium dependence is well known, to increase, as well as inward currents. The relationship between outward and inward menthol-sensitive currents was linear, suggesting a direct correlation between currents amplitudes and, demonstrating that menthol is able to augment both currents in a linear related manner. Activity of both channels in the basal condition and after menthol perfusion, at physiological membrane potential, was also analysed. In the basal condition cells displayed inward currents and no outward currents, which were elicited after menthol perfusion.
Lo scopo del progetto di tesi è stato studiare il ruolo dei canali Kir4.1 e BK nella migrazione cellulare, nella linea U251 di glioblastoma multiforme, tramite registrazioni elettrofisiologiche. Il glioblastoma multiforme è il tumore più aggressivo ed invasivo tra le neoplasie cerebrali, ed è pertanto caratterizzato da un’aspettativa di vita di 14-15 mesi. Nonostante 3 decenni di ricerche non è ancora disponibile una terapia significativamente efficace. Per questo motivo è estremamente importante continuare a studiare i meccanismi che regolano la migrazione di tale neoplasia, con lo scopo ultimo di individuare nuovi approcci terapeutici. Le registrazioni di elettrofisiologia sono state effettuate utilizzando la tecnica del perforated patch, al fine di studiare le correnti derivate da queste cellule in condizioni fisiologiche, senza modificare le concentrazioni degli ioni intracellulari, ed evitando quindi la dialisi intracellulare. La migrazione cellulare è stata valutata utilizzando il wound healing assay, saggio in cui viene effettuata una ferita (scratch) sulla coltura cellulare. Le cellule bipolari sono state registrate all’interno dello scratch. Le cellule bipolari all’interno dello scratch, coinvolte nel processo di migrazione, hanno mostrato caratteristiche tipiche delle cellule indifferenziate: potenziale di membrana a riposo depolarizzato e un’alta resistenza di membrana. Tali cellule hanno inoltre mostrato correnti basali rettificanti entranti ed uscenti. Dopodiché le correnti sono state caratterizzate da un punto di vista biofisico e farmacologico, al fine di comprendere i canali responsabili delle correnti entranti ed uscenti. Le correnti entranti sono state completamente bloccate dalla perfusione locale di bario, mentre per le correnti uscenti sono stati utilizzati bloccanti specifici dei canali di K+ calcio-dipendenti: il clotrimazolo, inibitore dei canali IK, e TEA (tetraetilammonio) ed iberiotossina, bloccanti dei canali BK. I dati ottenuti, confrontati con quelli in letteratura, hanno permesso di identificare i canali responsabili delle correnti rettificanti entranti come canali Kir4.1, ed i canali responsabili delle correnti rettificanti uscenti come canali BK. Per studiare il ruolo del calcio nel processo di migrazione le cellule bipolari sono state registrate in seguito alla perfusione locale di mentolo, un agonista del canale cationico TRPM8, principalmente permeabile al calcio. Il mentolo ha causato un aumento delle correnti uscenti, la cui Ca2+ dipendenza è nota, e anche un aumento delle correnti entranti. La relazione tra le correnti entranti ed uscenti, in seguito alla perfusione con il mentolo, è lineare. Ciò suggerisce che vi sia una correlazione diretta tra l’ampiezza delle due correnti, e dimostra inoltre come il mentolo sia in grado di aumentare entrambe le correnti in maniera lineare. L’attività di entrambi i canali è stata valutata anche a potenziali fisiologici, sia nella condizione basale che dopo la perfusione di mentolo. Nella condizione basale le cellule hanno mostrato correnti entranti e l’assenza di correnti uscenti, che sono state evocate in seguito alla perfusione con il mentolo.
Glioblastoma multiforme: role of voltage-gated potassium channels on cellular migration. (Glioblastoma multiforme: ruolo dei canali di potassio voltaggio dipendenti sulla migrazione cellulare)
OLIVERO, FEDERICO
2019/2020
Abstract
The aim of this thesis is studying Kir4.1 and BK channels role in cell migration, in U251 glioblastoma multiforme cell line, by means of electrophysiological recordings. Glioblastoma multiforme is the most aggressive and invasive tumor among cerebral neoplasms, and it is thus characterised by a 14-15 months life expectancy. Despite 3 decades of research no effective therapeutic strategies are available to date. For this reason, in order to develop new and effective therapeutic strategies, it is of extreme importance studying and gathering a more detailed knowledge on cell mechanisms underlying GBM migration. Electrophysiological recordings were carried out by utilising the perforated patch technique with the intention of studying cell currents in physiological conditions, without altering intracellular ions concentrations and thus avoiding intracellular dialysis. Cell migration was evaluated by means of the wound healing assay, consisting in scratching petri dishes. Bipolar shaped cells were recorded inside the scratch. Bipolar cells within the scratch, involved in migration, showed a depolarised resting membrane potential and a large input resistance, which are typical features of undifferentiated cells. Said cells also showed inward and outward rectifying currents. Thereafter, in order to characterise channels responsible for inward and outward currents, biophysical and pharmacological properties of such currents were analysed. Inward rectifying currents were completely blocked by local perfusion of barium; to identify outward rectifier currents, bipolar shaped cells were locally perfused with known Ca2+ -activated K+ channels blockers such as: clotrimazole, which blocks IK channels, TEA (tetraethylammonium) and iberiotoxin, which block BK channels. Thanks to the data acquired, which is in agreement with data previously published in literature, it was possible to identify Kir4.1 channels as the ones responsible for inward currents, and BK channels as the ones responsible for outward currents. Bipolar shaped cells were recorded after local perfusion with menthol in order to study calcium’s role in the migration process. Menthol is indeed an agonist of TRPM8, a cationic channel preferably permeable to Ca2+ ions. Perfusion with said agonist caused outward currents, whose calcium dependence is well known, to increase, as well as inward currents. The relationship between outward and inward menthol-sensitive currents was linear, suggesting a direct correlation between currents amplitudes and, demonstrating that menthol is able to augment both currents in a linear related manner. Activity of both channels in the basal condition and after menthol perfusion, at physiological membrane potential, was also analysed. In the basal condition cells displayed inward currents and no outward currents, which were elicited after menthol perfusion.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/12742