This thesis is focused on the analysis and the implementation of an integrated circuit able to transmit information from the floating high side voltage domain to the low side one of a gate driver. The gate driver is an high voltage integrated circuit used to control power switches in an inverter leg. It is divided in two main voltage domains, one referred to ground and the other one referred to a floating ground (VS), that can reach up to 1200 V. Since these two voltage domains are located on the same substrate, to ensure isolation between them, a complex structure called termination is used. To ensure communication between these two voltage domains, n-channel DMOS level shifters (lsnmos) with source and gate available in low side and drain in high side, are included in the termination. In standard gate driver implementation these devices are used to drive high side power switch, by applying an impulse at lsnmos gate. For the scope proposed in this project, the level shifter is used to send information from high side to low side. The device is kept slightly on and a square wave is applied to its drain, to send a bit to source in low side. An analysis of DMOS structure and model is reported at the beginning of the thesis. The purpose is to investigate required operating condition to maximize the signal transfer capability. The level shifter is a complex and huge device that includes a long drift region. Simulation results show a blind time after each negative VS transient, which duration increases with lsnmos width. However, signal amplitude is larger with bigger devices. To overcome the trade-off between blind communication time and signal amplitude, two variants of the chip are proposed: LSDOWN_1 and LSDOWN_2. They differ from each other about lsnmos dimension, of W=46 um and W=142 um. The design of the chip is then presented. The IC is divided in high side, referred to a floating ground VS, which can float between 0 V and 600 V, and low side, which is referred to ground. In the high side a Reference generator and an Oscillator are integrated. Reference generator creates all voltage and current references in the circuit and two identical versions are included in low side and high side. Oscillator is able to generate a 15 V peak-to-peak square wave, at 500 kHz. Square wave can be turned on and off by an external Enable pin, that stops and starts oscillation. The information is transmitted in differential way using two devices to minimize common mode disturbs. At low side the signal is sensed by a comparator with hysteresis. The main task of low side is to detect signals (for the transmission purpose) and try to estimate its amplitude (for transmission robustness evaluation). The comparator threshold can be changed with the setting of three trimming bits. The output of comparator is buffered to be read with an oscilloscope and the value of hysteresis threshold can be estimate with an output pin. Layout part is then discussed. Physical design is made to have the two differential signal path as symmetric as possible, to minimize differential disturbs. Chips are placed in two different type of package: ceramic and plastic. The former is used to have the possibility to microprobe internal signal for debug purpose. The latter is used to perform functional analysis in real application. Two different validation boards are then produced to perform a complete silicon validation.
Una soluzione monolitica per trasmettere da un dominio ad alta tensione verso uno a bassa tensione. La tesi proposta ha come scopo principale l’analisi e l’implementazione di un circuito integrato in grado di trasmettere informazioni da un dominio ad alta tensione flottante a un dominio a bassa tensione, all’interno di un gate driver. Un Gate driver è un circuito integrato ad alta tensione in grado di comandare l’accensione e lo spegnimento degli interruttori in un inverter. É diviso in due parti, una riferita a massa e una riferita a una massa flottante VS, che può arrivare fino a 1200 V. Dato che i due domini di tensione sono presenti sullo stesso substrato, per garantirne il corretto isolamento, sono separati da una complessa struttura chiamata terminazione. Questa include al suo interno due n-channel DMOS level shifter (lsnmos) con source e gate disponibili nel dominio a bassa tensione e con drain accessibile nel dominio ad alta tensione. Solitamente, questi componenti sono utilizzati per inviare i segnali di set e reset e quindi comandare l’accensione e lo spegnimento dell’interruttore ad alta tensione. In questo progetto, invece, il DMOS viene usato per trasmettere un segnale dal dominio ad alta tensione a quello a bassa tensione. Il device viene lasciato leggermente acceso e viene applicata un’ onda quadra al suo drain, inviando un bit al source. All’inizio la tesi riporta l’analisi della struttura e del modello del level shifter, fatta con l’obiettivo di trovare la miglior condizione operativa in grado di massimizzare il segnale trasmesso. Questo complesso dispositivo comprende una lunga zona di drift. I risultati delle simulazioni hanno evidenziato un periodo cieco di trasmissione dopo una transizione negativa di VS da 600 V a 0 V, la cui durata aumenta all’aumentare delle dimensioni del lsnmos. L’ampiezza del segnale, invece, è maggiore al crescere delle dimensioni del dispositivo. Per questo motivo sono state realizzate due versioni del chip, LSDOWN_1 con W=46 um e LSDOWN_2 con W=142 um. Viene poi riportato il design dei testchip. Le due varianti sono internamente divise in due domini di tensione, una a VS, che può raggiungere 600 V, e una riferita a massa. La parte riferita ad alta tensione contiene un reference generator che ha il compito di fornire i riferimenti di corrente e tensione usati all’interno del circuito. È inoltre presente un oscillatore, in grado di produrre un onda quadra con 15 V di ampiezza e 500 kHz di frequenza, che viene applicata ai drain. Questa è comandata dall’utente attraverso un segnale di enable, che avvia e stoppa l’oscillazione. Il segnale viene trasmesso in modo differenziale utilizzando due level shifter per minimizzare i disturbi di modo comune. A bassa tensione, l’informazione viene ricevuta ai source dei level shifter e posta in ingresso a un comparatore con isteresi. Questo ha il compito di individuare il segnale quando presente e stimarne l’ampiezza, per indagare la rubustezza della tecnica. Infatti attraverso tre bit di settaggio è possibile modulare la soglia del comparatore e quindi capire quant’è l’ampiezza del segnale che lo fa scattare. L’output viene bufferizzato per poterlo visualizzare con un oscilloscopio, mentre attraverso un altro pin di output è possibile stimare l’ampiezza dell’isteresi applicata. È riportata in seguito la realizzazione del layout del dispositivo. Questo è stato realizzato in modo da rendere i cammini differenziali del segnale il più simmetrici possibile per minimizzare i disturbi. Sono stati usati due tipi di package: ceramico e plastico. Il primo per avere la possibilità di sondare internamente i segnali, per condurre il debug del dispositivo. Il secondo per testare la funzionalità in condizioni di normale applicazione. Sono state quindi realizzate due differenti board per la completa validazione del chip.
Monolithic level shift down solution for high voltage application.
PORTESAN, ALESSANDRO
2020/2021
Abstract
This thesis is focused on the analysis and the implementation of an integrated circuit able to transmit information from the floating high side voltage domain to the low side one of a gate driver. The gate driver is an high voltage integrated circuit used to control power switches in an inverter leg. It is divided in two main voltage domains, one referred to ground and the other one referred to a floating ground (VS), that can reach up to 1200 V. Since these two voltage domains are located on the same substrate, to ensure isolation between them, a complex structure called termination is used. To ensure communication between these two voltage domains, n-channel DMOS level shifters (lsnmos) with source and gate available in low side and drain in high side, are included in the termination. In standard gate driver implementation these devices are used to drive high side power switch, by applying an impulse at lsnmos gate. For the scope proposed in this project, the level shifter is used to send information from high side to low side. The device is kept slightly on and a square wave is applied to its drain, to send a bit to source in low side. An analysis of DMOS structure and model is reported at the beginning of the thesis. The purpose is to investigate required operating condition to maximize the signal transfer capability. The level shifter is a complex and huge device that includes a long drift region. Simulation results show a blind time after each negative VS transient, which duration increases with lsnmos width. However, signal amplitude is larger with bigger devices. To overcome the trade-off between blind communication time and signal amplitude, two variants of the chip are proposed: LSDOWN_1 and LSDOWN_2. They differ from each other about lsnmos dimension, of W=46 um and W=142 um. The design of the chip is then presented. The IC is divided in high side, referred to a floating ground VS, which can float between 0 V and 600 V, and low side, which is referred to ground. In the high side a Reference generator and an Oscillator are integrated. Reference generator creates all voltage and current references in the circuit and two identical versions are included in low side and high side. Oscillator is able to generate a 15 V peak-to-peak square wave, at 500 kHz. Square wave can be turned on and off by an external Enable pin, that stops and starts oscillation. The information is transmitted in differential way using two devices to minimize common mode disturbs. At low side the signal is sensed by a comparator with hysteresis. The main task of low side is to detect signals (for the transmission purpose) and try to estimate its amplitude (for transmission robustness evaluation). The comparator threshold can be changed with the setting of three trimming bits. The output of comparator is buffered to be read with an oscilloscope and the value of hysteresis threshold can be estimate with an output pin. Layout part is then discussed. Physical design is made to have the two differential signal path as symmetric as possible, to minimize differential disturbs. Chips are placed in two different type of package: ceramic and plastic. The former is used to have the possibility to microprobe internal signal for debug purpose. The latter is used to perform functional analysis in real application. Two different validation boards are then produced to perform a complete silicon validation.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/13777