Calcific aortic valve stenosis (CAVS) is a pathological condition characterized by a progressive fibro-calcific remodeling of the valve leaflets. To date, the pathophysiology underlying CAVS, is considered as an active and multifactorial process that involves different molecular and cellular pathways. However, despite continuous studies, there are currently no therapies that allow to prevent its progression, so surgical treatment (AVR) or percutaneous treatment (TAVI) are the only existing therapeutic strategies. To develop new drug treatment strategies, the identification of new possible drug targets represents an exigency. Recent studies have shown that oxidative stress affecting the valvular endothelium plays a key role in the pathogenesis of CAVS. Furthermore, the existence of a close correlation between the regulation of intracellular Ca2+ signaling and the presence of ROS in vascular endothelial cells has been demonstrated, while there is still no similar evidence in the valvular endothelium. The aim of the thesis project was to evaluate the possible role of intracellular Ca2+ signaling in the pathogenesis of CAVS, focalizing on the probable involvement of the Ca2+/calmodulin-dependent protein kinase type 2 (CaMKII). First, an analysis of CaMKII protein expression was performed on endothelial tissues and cells isolated from stenotic and healthy valves. This analysis highlighted a decrease in the expression of the two active forms of the protein, the oxidized form (oxCaMKII) and the phosphorylated form (pCaMKII), both in aortic valve leaflets and in valve endothelial cells (VEC) of stenotic patients. The decrease in oxCaMKII protein expression in stenotic VEC led to the hypothesis of a compensatory increase in the activity of the antioxidant glutathione system, since the GSH/GSSG ratio was increased in the pathological cells. On the other hand, the decrease in pCaMKII protein expression in stenotic VEC led to the hypothesis of a de-regulation of the intracellular Ca2+ signaling in the pathological state. Since in literature there is no characterization of Ca2+ channels present on the valvular endothelium, a bioinformatic analysis of public RNA-seq data was performed, then validated by qPCR which demonstrated the expression of approximately 85% of the Ca2+ ion channels existing in the valvular endothelium. Furthermore, by studying the Ca2+ signaling of the valvular endothelium, it was observed that, by treating cells with pharmacological inhibitors (CPA) and physiological stimuli (ATP), in stenotic cells there is significantly less Ca2+ entry than in control cells. This suggests a possible de-regulation of the “Store-Operated Calcium Entry” mechanism (SOCE) in the pathological cells. Finally, through the induction of Ca2+ release from intracellular stores, an increase in the Ca2+ release in stenotic VEC has been observed, which led to the hypothesis of the existence of an interesting compensatory mechanism of hyper-activation of the InsP3 receptors in pathological cells. In conclusion, data shown in this thesis allowed us to hypothesize that the oxidative stress that occurs in CAVS is probably involved in the de-regulation of intracellular Ca2+ signaling and, consequently, of CaMKII activity.
La degenerazione calcifica della valvola aortica (CAVS) è una condizione patologica caratterizzata da un progressivo rimodellamento fibro-calcifico dei lembi valvolari. La fisiopatologia alla base della CAVS, ad oggi, viene considerata come un processo attivo e multifattoriale che coinvolge differenti vie molecolari e cellulari. Tuttavia, nonostante i continui studi, non esistono al momento terapie che permettano di prevenirne la progressione, per cui il trattamento chirurgico (AVR) o il trattamento percutaneo (TAVI) rappresentano le uniche strategie terapeutiche efficaci esistenti. A tal proposito, allo scopo di sviluppare nuove strategie di trattamento farmacologico, l’identificazione di nuovi possibili bersagli farmacologici, rappresenta un’esigenza concreta. Recenti studi, hanno dimostrato che lo stress ossidativo a carico dell’endotelio valvolare riveste un ruolo chiave nella patogenesi della CAVS. Inoltre, è stata dimostrata l’esistenza di una stretta correlazione tra la regolazione della segnalazione intracellulare di Ca2+ e la presenza di ROS nelle cellule endoteliali vascolari, argomento ancora non approfondito nell’endotelio valvolare. Poste queste premesse, lo scopo del progetto di tesi è stato quello di valutare il possibile ruolo della segnalazione intracellulare di Ca2+ nella patogenesi della CAVS, ponendo particolare attenzione al probabile coinvolgimento della protein chinasi Ca2+/calmodulina-dipendente di tipo 2 (CaMKII). A tal proposito, innanzitutto, è stata effettuata un’analisi dell’espressione proteica di CaMKII su tessuti e cellule endoteliali isolate da valvole stenotiche e sane. Tale analisi ha permesso di evidenziare una diminuzione dell’espressione delle due forme attive della proteina, la forma ossidata (oxCaMKII) e quella fosforilata (pCaMKII), sia nei lembi valvolari aortici che nelle cellule endoteliali valvolari (VEC) isolate da lembi di pazienti affetti da stenosi valvolare. La diminuzione dell’espressione proteica di oxCaMKII nelle VEC stenotiche ha fatto ipotizzare un aumento, di tipo compensatorio, dell’attività del sistema antiossidante del glutatione, dal momento che il rapporto GSH/GSSG è risultato aumentato nelle cellule patologiche. Diversamente, la diminuzione dell’espressione proteica di pCaMKII nelle VEC stenotiche ha invece fatto ipotizzare una de-regolazione della segnalazione intracellulare di Ca2+ nello stato patologico. Poiché in letteratura non esiste alcuna caratterizzazione dei canali del Ca2+ presenti sull’endotelio valvolare, innanzitutto a tale scopo, è stata effettuata un’analisi bioinformatica di dati pubblici di RNA-seq, validata poi mediante qPCR, che ha permesso di dimostrare l’espressione di circa l’85% dei canali ionici del Ca2+ esistenti nell’endotelio valvolare. Inoltre, studiando i flussi di Ca2+ dell’endotelio valvolare, è stato osservato che, trattando le cellule con inibitori farmacologici (CPA) e stimoli fisiologici (ATP), nelle cellule stenotiche è presente un ingresso di Ca2+ significativamente minore rispetto a quanto accade nelle cellule di controllo. Ciò ha permesso di ipotizzare una compromissione del meccanismo di ingresso di calcio operato dai depositi intracellulari (SOCE) nelle cellule patologiche. Infine, mediante l’induzione del rilascio di Ca2+ dai depositi intracellulari è emerso un aumento nel flusso di Ca2+ uscente nelle VEC stenotiche, cosa che ha portato all’ipotesi dell’esistenza di un interessante meccanismo, di tipo compensatorio, di iper-attivazione dei recettori dell’InsP3 nelle cellule patologiche. In conclusione, i dati mostrati in questa tesi hanno permesso di ipotizzare che lo stress ossidativo che si verifica nella CAVS sia probabilmente coinvolto nella de-regolazione della segnalazione intracellulare di Ca2+ e, di conseguenza, dell’attività di CaMKII.
Coinvolgimento dello stress ossidativo nella degenerazione della valvola aortica: meccanismi molecolari e cellulari legati alla chinasi Ca2+/calmodulina-dipendente di tipo II
IANNONE, CRISTINA
2020/2021
Abstract
Calcific aortic valve stenosis (CAVS) is a pathological condition characterized by a progressive fibro-calcific remodeling of the valve leaflets. To date, the pathophysiology underlying CAVS, is considered as an active and multifactorial process that involves different molecular and cellular pathways. However, despite continuous studies, there are currently no therapies that allow to prevent its progression, so surgical treatment (AVR) or percutaneous treatment (TAVI) are the only existing therapeutic strategies. To develop new drug treatment strategies, the identification of new possible drug targets represents an exigency. Recent studies have shown that oxidative stress affecting the valvular endothelium plays a key role in the pathogenesis of CAVS. Furthermore, the existence of a close correlation between the regulation of intracellular Ca2+ signaling and the presence of ROS in vascular endothelial cells has been demonstrated, while there is still no similar evidence in the valvular endothelium. The aim of the thesis project was to evaluate the possible role of intracellular Ca2+ signaling in the pathogenesis of CAVS, focalizing on the probable involvement of the Ca2+/calmodulin-dependent protein kinase type 2 (CaMKII). First, an analysis of CaMKII protein expression was performed on endothelial tissues and cells isolated from stenotic and healthy valves. This analysis highlighted a decrease in the expression of the two active forms of the protein, the oxidized form (oxCaMKII) and the phosphorylated form (pCaMKII), both in aortic valve leaflets and in valve endothelial cells (VEC) of stenotic patients. The decrease in oxCaMKII protein expression in stenotic VEC led to the hypothesis of a compensatory increase in the activity of the antioxidant glutathione system, since the GSH/GSSG ratio was increased in the pathological cells. On the other hand, the decrease in pCaMKII protein expression in stenotic VEC led to the hypothesis of a de-regulation of the intracellular Ca2+ signaling in the pathological state. Since in literature there is no characterization of Ca2+ channels present on the valvular endothelium, a bioinformatic analysis of public RNA-seq data was performed, then validated by qPCR which demonstrated the expression of approximately 85% of the Ca2+ ion channels existing in the valvular endothelium. Furthermore, by studying the Ca2+ signaling of the valvular endothelium, it was observed that, by treating cells with pharmacological inhibitors (CPA) and physiological stimuli (ATP), in stenotic cells there is significantly less Ca2+ entry than in control cells. This suggests a possible de-regulation of the “Store-Operated Calcium Entry” mechanism (SOCE) in the pathological cells. Finally, through the induction of Ca2+ release from intracellular stores, an increase in the Ca2+ release in stenotic VEC has been observed, which led to the hypothesis of the existence of an interesting compensatory mechanism of hyper-activation of the InsP3 receptors in pathological cells. In conclusion, data shown in this thesis allowed us to hypothesize that the oxidative stress that occurs in CAVS is probably involved in the de-regulation of intracellular Ca2+ signaling and, consequently, of CaMKII activity.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/13892