My thesis project is focused on the synthesis and characterization of multifunctional nanoparticles containing boron, to be used in boron neutron capture therapy. This study has relied amply on the interdisciplinary cooperation among the Departments of Chemistry, Molecular Medicine and Physics at the University of Pavia. The aim of the project lies in the possibility of developing B4C and Fe3O4 nanomaterials to be used for BNCT and MRI imaging. BNCT traditionally sees the usage of compounds with a rather low efficiency. Nanomaterials containing 10B would allow for a high concentration in the tumoral tissue and subsequently for a better elimination from healthy tissues and from the circulatory system; moreover, a longer retention time would be attained with such procedure than with the use of borate molecules. The preparation of multifunctional materials has developed along different phases. The first part of the study was devoted to increasing the stability of the water suspension of B4C nanoparticles. The second part was centered on the optimization of the synthesis of a nanomaterial obtained via heterogeneous nucleation from Fe3O4 on a B4C core. The aim of such optimization process was to identify ideal conditions (temperature, reagents concentration ratio) for the solution to be stable. Iron was quantified through spectrophotometry, while for 10B we used neutronic autoradiography. Chemical-physical analyses on the suspensions were carried out through DLS, XRD and SEM. For all stable solutions we evaluated the internalization and intra-cellular distribution of the nanoparticles with the help of an in vitro model of epithelial cells (HeLa) and blood cells (Jurkat). The nanomaterials’ uptake in several cellular lines was also evaluated via neutronic autoradiography. The last part of the study focuses on the synthesis of nano capsules and polymeric nanoparticles. In both cases, the aim is that of allowing for co-localization and simultaneous delivery of B4C and Fe3O4 nanomaterials. The aim of this thesis is thus that of using nanomaterials as sources for atoms of 10B in BNCT while at the same time employing them as tools for the imaging process. Further developments of this project will explore iteraction mechanisms between cells and nanoparticles, as well as therapeutic efficacy; moreover, it will be possible to obtain dose/response curves by confronting results with previous outcomes related to the use of traditional borate compounds.
Il presente lavoro di tesi è incentrato sulla sintesi e caratterizzazione di nanoparticelle multifunzionali contenenti boro da utilizzare nella terapia a cattura neutronica. Questo studio si è avvalso di un ampio lavoro interdisciplinare che ha coinvolto i dipartimenti di Chimica, Medicina molecolare e Fisica dell’Università di Pavia. Lo scopo del progetto è quello di sviluppare nanomateriali di B4C e Fe3O4 che possano essere utilizzati rispettivamente per BNCT e imaging tramite MRI. Tradizionalmente in BNCT sono utilizzati composti la cui efficienza in molti casi (BPA, BSH) è scarsa. L’utilizzo di nanomateriali contenenti 10B permetterebbe di raggiungerne una elevata concentrazione nel tessuto tumorale, migliorarne l’eliminazione dai tessuti sani e dal sistema circolatorio e ottenere un tempo di ritenzione del nanomateriale nel tessuto tumorale superiore rispetto a quello delle molecole borate. La preparazione di nanomateriali multifunzionali si è sviluppata in diverse fasi. La prima parte dello studio è focalizzata sull’aumento della stabilità della sospensione acquosa di nanoparticelle di B4C. La seconda parte dello studio è incentrata sulla ottimizzazione della sintesi di un nanomateriale ottenuto per nucleazione eterogenea di Fe3O4 su un core di B4C. Lo scopo dell’ottimizzazione è quello di trovare le condizioni di reazione quali la temperatura e i rapporti di concentrazione dei reagenti ideali per l’ottenimento di una sospensione stabile. Il contenuto di ferro è stato quantificato tramite un metodo spettrofotometrico, quello di 10B è stato ottenuto per autoradiografia neutronica. Un’analisi chimico fisica delle sospensioni ottenute è stata condotta utilizzando DLS, XRD e SEM. Per ogni sospensione stabile si sono valutate l’internalizzazione e la distribuzione intracellulare delle nanoparticelle utilizzando un modello in vitro di cellule di tipo epiteliale (HeLa) e di tumore del sangue (Jurkat). Si è valutato anche l’uptake dei nanomateriali in diverse linee cellulari, grazie alla tecnica di autoradiografia neutronica. L’ultima parte dello studio è focalizzata sulla sintesi di nanocapsule e nanoparticelle polimeriche.3,4 In entrambi i casi lo scopo è quello di permettere la co-localizzazione e il delivery simultaneo di nanomateriali di B4C e di Fe3O4. Lo scopo della tesi consta dunque nella possibilità di utilizzare nanomateriali come fonte di atomi di 10B in BNCT e simultaneamente come strumento per imaging. Gli sviluppi di questo progetto consisteranno nell’ approfondimento degli studi atti a valutare i meccanismi di interazione tra le cellule e le NP e l’efficienza terapeutica e nel realizzare delle curve di dose/risposta confrontando i risultati ottenuti con i composti borati tradizionalmente utilizzati.
Sintesi e caratterizzazione di nanomateriali compositi per la terapia a cattura neutronica
DEMICHELIS, MARIA PAOLA
2020/2021
Abstract
My thesis project is focused on the synthesis and characterization of multifunctional nanoparticles containing boron, to be used in boron neutron capture therapy. This study has relied amply on the interdisciplinary cooperation among the Departments of Chemistry, Molecular Medicine and Physics at the University of Pavia. The aim of the project lies in the possibility of developing B4C and Fe3O4 nanomaterials to be used for BNCT and MRI imaging. BNCT traditionally sees the usage of compounds with a rather low efficiency. Nanomaterials containing 10B would allow for a high concentration in the tumoral tissue and subsequently for a better elimination from healthy tissues and from the circulatory system; moreover, a longer retention time would be attained with such procedure than with the use of borate molecules. The preparation of multifunctional materials has developed along different phases. The first part of the study was devoted to increasing the stability of the water suspension of B4C nanoparticles. The second part was centered on the optimization of the synthesis of a nanomaterial obtained via heterogeneous nucleation from Fe3O4 on a B4C core. The aim of such optimization process was to identify ideal conditions (temperature, reagents concentration ratio) for the solution to be stable. Iron was quantified through spectrophotometry, while for 10B we used neutronic autoradiography. Chemical-physical analyses on the suspensions were carried out through DLS, XRD and SEM. For all stable solutions we evaluated the internalization and intra-cellular distribution of the nanoparticles with the help of an in vitro model of epithelial cells (HeLa) and blood cells (Jurkat). The nanomaterials’ uptake in several cellular lines was also evaluated via neutronic autoradiography. The last part of the study focuses on the synthesis of nano capsules and polymeric nanoparticles. In both cases, the aim is that of allowing for co-localization and simultaneous delivery of B4C and Fe3O4 nanomaterials. The aim of this thesis is thus that of using nanomaterials as sources for atoms of 10B in BNCT while at the same time employing them as tools for the imaging process. Further developments of this project will explore iteraction mechanisms between cells and nanoparticles, as well as therapeutic efficacy; moreover, it will be possible to obtain dose/response curves by confronting results with previous outcomes related to the use of traditional borate compounds.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/13915