The objective of this paper is to illustrate the steps that led to the understanding, development and implementation of undulatory movements on continuous bodies with the aid of software. Chapter 1 starts with a historical excursus, aimed at demonstrating all the historical evolutions in terms of discoveries, starting from Pythagoras up to today, in which the use of software has made it possible to solve previously unthinkable problems. We will describe the general concepts that identify and characterize the wave, such as the concept of transport of energy without transport of matter and a characterization from the physical and mathematical point of view of the types and profiles of waves, which will be represented with a graph in which to include physical quantities. Finally, the reasons for the current high interest in waves, relating to their use in civil engineering. In chapter 2 we will study the transverse vibrations of the cables, i.e. the wave from a mathematical point of view, where, through appropriate hypotheses, a mechanical model will be built in which, through the equation of equilibrium, it will be possible to find the equation of D 'Alembert used to express the propagation of a wave motion in any part of the cable. We will analyze these vibrations with a given amplitude and frequency induced in the cable, in order to obtain a stationary solution of the string. Vibration patterns for each relative frequency on a string with specific boundary conditions will be studied. The observations of the previous chapter are considerable for chapter 3, as the problem of a support-support string with a force that pulls the string is investigated, and with the aid of the Abaqus \ CAE software, the frequencies and vibrations, studied with the finite element method, which will subsequently be compared in chapter 4 with a string created in a code on the Matlab software (the results will be compared between the analysis made with the finite element program and Matlab) . The results obtained with the code are obtained in closed form, through the wave equations and compared with the results reported in chapter 3.
L’obiettivo del presente elaborato è illustrare i passaggi che hanno portato alla comprensione, sviluppo e implementazione di movimenti ondulatori su corpi continui con l’ausilio di software. Nel capitolo 1 si parte con un excursus storico, atto a dimostrare tutte le evoluzioni storiche in termini di scoperte, partendo da Pitagora fino ad arrivare ad oggi, in cui l’uso dei software ha reso possibile risolvere problemi prima impensabili. Si descriveranno i concetti generali che identificano e caratterizzano l’onda, come il concetto di trasporto di energia senza trasporto di materia e una caratterizzazione dal punto di vista fisico matematico delle tipologie e dei profili di onde, che verranno rappresentate con un grafico in cui poter includere le grandezze fisiche. Infine, le motivazioni dell’attuale alto interesse per le onde, relative all’impiego nell’ingegneria civile. Nel capitolo 2 si studieranno le vibrazioni trasversali dei cavi, cioè l’onda dal punto di vista matematico, dove, tramite opportune ipotesi, si costruirà un modello meccanico in cui, attraverso l’equazione di equilibrio, si potrà trovare l’equazione di D’Alembert usata per esprimere la propagazione di un moto ondulatorio in qualsiasi parte del cavo. Si analizzeranno queste vibrazioni con una data ampiezza e frequenza indotte nel cavo, al fine di ricavare una soluzione stazionaria della stringa. Si studieranno i modelli di vibrazioni per ogni relativa frequenza su una corda con specifiche condizioni al bordo. Le osservazioni del capitolo precedente sono considerevoli per il capitolo 3, in quanto si approfondisce il problema di una corda appoggio-appoggio con una forza che tira la stringa, e si troveranno, con l’ausilio del software Abaqus\CAE, le frequenze e le vibrazioni, studiate con il metodo agli elementi finiti, che verranno, successivamente, confrontate nel capitolo 4 con una stringa realizzata in un codice sul software Matlab (si farà il confronto dei risultati tra l’analisi fatta con il programma agli elementi finiti e Matlab). I risultati ottenuti con il codice sono ottenuti in forma chiusa, tramite le equazioni delle onde e confrontati con i risultati riportati nel capitolo 3.
Vibrazioni in un sistema continuo
DELLA SALA, SIMONE
2020/2021
Abstract
The objective of this paper is to illustrate the steps that led to the understanding, development and implementation of undulatory movements on continuous bodies with the aid of software. Chapter 1 starts with a historical excursus, aimed at demonstrating all the historical evolutions in terms of discoveries, starting from Pythagoras up to today, in which the use of software has made it possible to solve previously unthinkable problems. We will describe the general concepts that identify and characterize the wave, such as the concept of transport of energy without transport of matter and a characterization from the physical and mathematical point of view of the types and profiles of waves, which will be represented with a graph in which to include physical quantities. Finally, the reasons for the current high interest in waves, relating to their use in civil engineering. In chapter 2 we will study the transverse vibrations of the cables, i.e. the wave from a mathematical point of view, where, through appropriate hypotheses, a mechanical model will be built in which, through the equation of equilibrium, it will be possible to find the equation of D 'Alembert used to express the propagation of a wave motion in any part of the cable. We will analyze these vibrations with a given amplitude and frequency induced in the cable, in order to obtain a stationary solution of the string. Vibration patterns for each relative frequency on a string with specific boundary conditions will be studied. The observations of the previous chapter are considerable for chapter 3, as the problem of a support-support string with a force that pulls the string is investigated, and with the aid of the Abaqus \ CAE software, the frequencies and vibrations, studied with the finite element method, which will subsequently be compared in chapter 4 with a string created in a code on the Matlab software (the results will be compared between the analysis made with the finite element program and Matlab) . The results obtained with the code are obtained in closed form, through the wave equations and compared with the results reported in chapter 3.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/13951