In chapter I the general concepts that identify and characterize the wave will be exposed.In chapter II we enter into the full discourse of vibrations, we study in detail the wave equation, also known as D'Alembert's equation, and it is the solution by considering a tight rope. The discussion of vibrations is subsequently extended to the beams, carrying out an in-depth study on transverse or, better, bending vibrations. The beam can perform different wave motions, depending on the type of boundary conditions. The solutions are not in all cases computable in closed form, some solutions are based on non-linear equations, for this reason it was necessary to implement a Matlab R2020b code to solve this problem. It was decided to implement the Newton-Raphson code, one of the methods for the approximate calculation of a solution of an equation of the form f (x) = 0.In chapter III we start talking about finite element analysis. There are different types of elements and, among all the possible ones, a detailed explanation of those used in the analyzes is made. Furthermore, the resolution method used by Abaqus for the resolution of the frequency calculation and, therefore, of the calculation of natural pulsations is presented. the case study. In the following thesis work an analysis of the problem was carried out, considering different types of meshes through the Abaqus software, and the results were subsequently compared with a numerical solution implemented within the Matlab R2020b software, considering the solution of the problem of transverse vibrations treated in chapter II. In chapter V the results of the analyzes carried out are included. Comparisons are first made between the solutions studied, using different elements, with the Abaqus software and, subsequently, the most sensible solutions are compared to the Matlab solution. Some ways of vibrating found and compared with the solution contained within the article are also included. Two appendices have been added at the end of the thesis work. In the first there is the explanation of the Newton-Raphson method and the implementation of the code created with the Matlab software to calculate the solution of the embedded beam, but also useful for solving non-linear equations, including other problems of transverse vibrations with different conditions to the side. In the second appendix, instead, the code built to calculate the vibration modes of the embedded beam was inserted and in the code itself, the results of the most reliable frequencies calculated with the Abaqus software with which comparisons were made on the error present for the first modes of vibrating.
Nel capitolo I verranno esposti i concetti generali che identificano e caratterizzano l’onda.Nel capitolo II si entra nel pieno discorso delle vibrazioni, si studia nel dettaglio l’equazione dell’onda, conosciuta anche come equazione di D’Alembert, e si tratta la soluzione considerando una corda tesa. Il discorso delle vibrazioni viene successivamente ampliato alle travi, effettuando uno studio approfondito sulle vibrazioni trasversali o, meglio, flessionali. La trave può effettuare differenti moti ondulatori, a seconda della tipologia di condizioni al contorno. Le soluzioni non risultano in tutti i casi calcolabili in forma chiusa, alcune soluzioni sono basate su equazioni non lineari, per questo motivo è stato necessario implementare un codice Matlab R2020b che risolvesse tale problema. Si è deciso di implementare il codice di Newton-Raphson, uno dei metodi per il calcolo approssimato di una soluzione di un’equazione della forma f(x)=0. Nel capitolo III si inizia a parlare di analisi agli elementi finiti.Esistono diverse tipologie di elementi e, tra tutti i possibili, viene effettuata una spiegazione dettagliata di quelli utilizzati nelle analisi. Viene, inoltre, presentato il metodo di risoluzione utilizzato da Abaqus per la risoluzione del calcolo delle frequenze e, quindi, del calcolo delle pulsazioni naturali.Nel capitolo IV vengono trattate nel dettaglio le analisi ai modi di vibrare svolte con il software Abaqus e viene spiegato il caso studio.Nel seguente lavoro di tesi si è svolta un’analisi del problema, considerando diverse tipologie di mesh attraverso il software Abaqus, e i risultati sono stati successivamente confrontati con una soluzione numerica implementata all’interno del software Matlab R2020b, considerando la soluzione del problema delle vibrazioni trasversali trattato nel capitolo II.Nel capitolo V vengono inseriti i risultati delle analisi effettuate. Vengono prima svolti dei confronti tra le soluzioni studiate, utilizzando differenti elementi, con il software Abaqus e, successivamente, le soluzioni più sensate vengono paragonate alla soluzione di Matlab. Vengono anche inseriti alcuni modi di vibrare trovati e comparati con la soluzione contenuta all’interno dell’articolo. Alla fine del lavoro di tesi sono stati aggiunti due appendici. Nel primo è presente la spiegazione del metodo di Newton-Raphson e l’implementazione del codice creato con il software Matlab per calcolare la soluzione della trave incastrata, ma utile anche per risolvere equazioni non lineari, tra cui altri problemi di vibrazioni trasversali con differenti condizioni al contorno. Nel secondo appendice è stato, invece, inserito il codice costruito per calcolare i modi di vibrare della trave incastrata e nel codice stesso sono, poi, stati inseriti i risultati delle frequenze più affidabili calcolati con il software Abaqus con cui sono stati effettuati confronti sull’errore presente per i primi modi di vibrare.
Studio matematico e modellazione con software delle vibrazioni trasversali
CURTI, CRISTINA
2020/2021
Abstract
In chapter I the general concepts that identify and characterize the wave will be exposed.In chapter II we enter into the full discourse of vibrations, we study in detail the wave equation, also known as D'Alembert's equation, and it is the solution by considering a tight rope. The discussion of vibrations is subsequently extended to the beams, carrying out an in-depth study on transverse or, better, bending vibrations. The beam can perform different wave motions, depending on the type of boundary conditions. The solutions are not in all cases computable in closed form, some solutions are based on non-linear equations, for this reason it was necessary to implement a Matlab R2020b code to solve this problem. It was decided to implement the Newton-Raphson code, one of the methods for the approximate calculation of a solution of an equation of the form f (x) = 0.In chapter III we start talking about finite element analysis. There are different types of elements and, among all the possible ones, a detailed explanation of those used in the analyzes is made. Furthermore, the resolution method used by Abaqus for the resolution of the frequency calculation and, therefore, of the calculation of natural pulsations is presented. the case study. In the following thesis work an analysis of the problem was carried out, considering different types of meshes through the Abaqus software, and the results were subsequently compared with a numerical solution implemented within the Matlab R2020b software, considering the solution of the problem of transverse vibrations treated in chapter II. In chapter V the results of the analyzes carried out are included. Comparisons are first made between the solutions studied, using different elements, with the Abaqus software and, subsequently, the most sensible solutions are compared to the Matlab solution. Some ways of vibrating found and compared with the solution contained within the article are also included. Two appendices have been added at the end of the thesis work. In the first there is the explanation of the Newton-Raphson method and the implementation of the code created with the Matlab software to calculate the solution of the embedded beam, but also useful for solving non-linear equations, including other problems of transverse vibrations with different conditions to the side. In the second appendix, instead, the code built to calculate the vibration modes of the embedded beam was inserted and in the code itself, the results of the most reliable frequencies calculated with the Abaqus software with which comparisons were made on the error present for the first modes of vibrating.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/13952