Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder. Clinical features can be distinguished in motor and non-motor symptoms. PD neuropathology is characterized by two key hallmarks: the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and the formation of intracytoplasmic inclusions, called Lewy bodies (LBs), one of the major causes of neuronal cell death. Notably, LBs are largely derived by an abnormal accumulation of α-synuclein, encoded by the SNCA gene. The pathological aggregation of this protein is attributable to risk factors such as aging, environmental factors, and genetic variations of SNCA (for instance, gene multiplications or gain of function mutations). Particularly, SNCA expression alterations have been reported to be associated to an earlier disease onset. α-synuclein function is not fully understood, but within neuronal cells, this protein localizes in presynaptic axonal terminals, and it is assumed to play a role in synaptic vesicle dynamics, and in intracellular trafficking. Given the key role played by SNCA in the context of both familial and sporadic PD, interfering with physiological mechanisms that control its expression is one approach to limit disease progression. In this context, G-quadruplex (G4) structures are promising therapeutic targets. These non-canonical nucleic acids (NA) secondary structures are widely distributed in the human genome, and have been associated with numerous biological functions, among which replication, transcription, and translation modulation. This notion has encouraged us to investigate over possible roles of G4s in PD neurodegenerative disorder, and to assess the possibility to use small-molecule G4 ligands (G4Ls) as potential probes and therapeutic agents. By means of a computational analysis, Valentina Pirota’s group, from the Organic Chemistry Laboratory of University of Pavia, found a putative G4 structure in SNCA promoter, named SNCA_G1, which displayed to have a QGRS Mapper G-score of 62, higher than those of well-known genes. Furthermore, by circular dichroism (CD) spectroscopy, Valentina Pirota’s group demonstrated that the predicted SNCA_G1 is able to fold into a G4 secondary structure. Starting from Valentina Pirota’s group crucial contribution, we tested SNCA_G1 biological relevance. By performing qPCR stop assay, we demonstrated that the putative SNCA_G1 is able to fold into a G4 structure in silico in HeLa genomic DNA, under increasing KCl concentrations. Furthermore, by applying again qPCR stop assay on the same genomic DNA sample, we found that three commercially available G4Ls (HPHAM, TMPyP4 and BRACO19) are able to stabilize SNCA_G1 motif in the presence of 10 mM KCl. We then focused on the in vitro effect of SNCA_G1 modulation by means of the three G4Ls. After assessing HPHAM, TMPyP4 and BRACO19 cytotoxicity, we treated HeLa cells with the three molecules and evaluated their cellular localization. Furthermore, by performing a qPCR, we found that SNCA expression resulted to be decreased after the in vitro treatment with the G4Ls with respect to its control (non-treated cells). Lastly, we performed a western blot analysis on proteins extracted form TMPyP4 treated HeLa cells and found that also α synuclein protein levels resulted to be reduced, highlighting the actual transcription modulation mediated by the G4L. Considering all our results, we propose a novel strategy that sees SNCA_G1 as a potential therapeutic target whose modulation by means of G4Ls could provide an unprecedented control over SNCA gene transcription, leading to the possibility to manage LBs formation, hence a key PD neuropathological hallmark.
La malattia di Parkinson (PD) è il secondo disturbo neurodegenerativo progressivo più comune. La neuropatologia della PD è caratterizzata da due elementi chiave: la degenerazione dei neuroni dopaminergici nella substantia nigra pars compacta (SNc) e la formazione di inclusioni intra citoplasmatiche, chiamate corpi di Lewy (LB), una delle principali cause di morte cellulare neuronale. In particolare, i LB sono in gran parte derivati da un accumulo anomalo di α-sinucleina, codificata dal gene SNCA. L'aggregazione patologica di questa proteina è attribuibile a fattori di rischio come l'invecchiamento, fattori ambientali e variazioni genetiche di SNCA (per esempio, moltiplicazioni geniche o mutazioni di funzione). In particolare, è stato riportato che le alterazioni dell'espressione di SNCA sono associate a un esordio più precoce della malattia. La funzione dell'α-sinucleina non è stata completamente caratterizzata, ma all'interno delle cellule neuronali, questa proteina si localizza nei terminali assonali presinaptici e si presume che abbia un ruolo nella dinamica delle vescicole sinaptiche e nel traffico intracellulare. Dato il ruolo chiave di SNCA nel contesto della PD sia familiare che sporadica, interferire con i meccanismi fisiologici che controllano la sua espressione è un primo approccio per cercare di limitare la progressione della malattia stessa. In questo contesto, le strutture G-quadruplex (G4) sono obiettivi terapeutici promettenti. Queste strutture secondarie non canoniche degli acidi nucleici (NA) sono ampiamente distribuite nel genoma umano, e sono state associate a numerose funzioni biologiche, tra cui la modulazione della replicazione, della trascrizione e della traduzione. Questa nozione ci ha incoraggiato ad indagare sui possibili ruoli dei G4 nel disordine neurodegenerativo della PD, e a valutare la possibilità di utilizzare ligandi G4 (G4Ls) come potenziali sonde e agenti terapeutici. Attraverso un'analisi computazionale, il gruppo di Valentina Pirota, del Laboratorio di Chimica Organica dell'Università di Pavia, ha trovato una struttura putativa G4 nel promotore di SNCA, chiamata SNCA_G1, che ha mostrato di avere un QGRS Mapper G-score di 62, superiore a quelli di geni noti. Inoltre, con la spettroscopia di dicroismo circolare (CD), il gruppo di Valentina Pirota ha dimostrato che SNCA_G1 è in grado di ripiegarsi in una struttura secondaria G4. Partendo dal contributo cruciale del gruppo di Valentina Pirota, abbiamo testato la rilevanza biologica di SNCA_G1. Eseguendo un qPCR stop assay, abbiamo dimostrato che SNCA_G1 è in grado di ripiegarsi in una struttura G4 in silico, nel DNA genomico di HeLa. Inoltre, applicando di nuovo un qPCR stop assay sullo stesso campione di DNA genomico, abbiamo scoperto che tre G4L disponibili in commercio (HPHAM, TMPyP4 e BRACO19) sono in grado di stabilizzare SNCA_G1 in presenza di 10 mM KCl. Ci siamo quindi concentrati sull'effetto in vitro della modulazione di SNCA_G1 per mezzo dei tre G4L. Dopo aver valutato la citotossicità di HPHAM, TMPyP4 e BRACO19, abbiamo trattato le cellule HeLa con le tre molecole e valutato la loro localizzazione cellulare. Inoltre, eseguendo una qPCR, abbiamo trovato che l'espressione di SNCA è diminuita dopo il trattamento in vitro con i G4L rispetto al suo controllo (cellule non trattate). Infine, abbiamo eseguito un'analisi western blot sulle proteine estratte dalle cellule trattate con TMPyP4 e abbiamo scoperto che anche i livelli di α-synucleina sono ridotti, evidenziando l'effettiva modulazione della trascrizione mediata dal G4L. Considerando tutti i nostri risultati, proponiamo una nuova strategia che vede SNCA_G1 come un potenziale bersaglio terapeutico la cui modulazione per mezzo di G4Ls potrebbe fornire un controllo senza precedenti sulla trascrizione del gene SNCA, e sulla formazione dei LBs, una caratteristica neuropatologica chiave della PD.
Identification of putative G-quadruplex structures in Parkinson's Disease associated α-synuclein-encoding gene
DI GERLANDO, ROSALINDA
2020/2021
Abstract
Parkinson’s disease (PD) is the second most common progressive neurodegenerative disorder. Clinical features can be distinguished in motor and non-motor symptoms. PD neuropathology is characterized by two key hallmarks: the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and the formation of intracytoplasmic inclusions, called Lewy bodies (LBs), one of the major causes of neuronal cell death. Notably, LBs are largely derived by an abnormal accumulation of α-synuclein, encoded by the SNCA gene. The pathological aggregation of this protein is attributable to risk factors such as aging, environmental factors, and genetic variations of SNCA (for instance, gene multiplications or gain of function mutations). Particularly, SNCA expression alterations have been reported to be associated to an earlier disease onset. α-synuclein function is not fully understood, but within neuronal cells, this protein localizes in presynaptic axonal terminals, and it is assumed to play a role in synaptic vesicle dynamics, and in intracellular trafficking. Given the key role played by SNCA in the context of both familial and sporadic PD, interfering with physiological mechanisms that control its expression is one approach to limit disease progression. In this context, G-quadruplex (G4) structures are promising therapeutic targets. These non-canonical nucleic acids (NA) secondary structures are widely distributed in the human genome, and have been associated with numerous biological functions, among which replication, transcription, and translation modulation. This notion has encouraged us to investigate over possible roles of G4s in PD neurodegenerative disorder, and to assess the possibility to use small-molecule G4 ligands (G4Ls) as potential probes and therapeutic agents. By means of a computational analysis, Valentina Pirota’s group, from the Organic Chemistry Laboratory of University of Pavia, found a putative G4 structure in SNCA promoter, named SNCA_G1, which displayed to have a QGRS Mapper G-score of 62, higher than those of well-known genes. Furthermore, by circular dichroism (CD) spectroscopy, Valentina Pirota’s group demonstrated that the predicted SNCA_G1 is able to fold into a G4 secondary structure. Starting from Valentina Pirota’s group crucial contribution, we tested SNCA_G1 biological relevance. By performing qPCR stop assay, we demonstrated that the putative SNCA_G1 is able to fold into a G4 structure in silico in HeLa genomic DNA, under increasing KCl concentrations. Furthermore, by applying again qPCR stop assay on the same genomic DNA sample, we found that three commercially available G4Ls (HPHAM, TMPyP4 and BRACO19) are able to stabilize SNCA_G1 motif in the presence of 10 mM KCl. We then focused on the in vitro effect of SNCA_G1 modulation by means of the three G4Ls. After assessing HPHAM, TMPyP4 and BRACO19 cytotoxicity, we treated HeLa cells with the three molecules and evaluated their cellular localization. Furthermore, by performing a qPCR, we found that SNCA expression resulted to be decreased after the in vitro treatment with the G4Ls with respect to its control (non-treated cells). Lastly, we performed a western blot analysis on proteins extracted form TMPyP4 treated HeLa cells and found that also α synuclein protein levels resulted to be reduced, highlighting the actual transcription modulation mediated by the G4L. Considering all our results, we propose a novel strategy that sees SNCA_G1 as a potential therapeutic target whose modulation by means of G4Ls could provide an unprecedented control over SNCA gene transcription, leading to the possibility to manage LBs formation, hence a key PD neuropathological hallmark.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/14016