Several gaseous detectors are operated at the CERN LHC experiments. In particular, Resistive Plate Chambers (RPCs) can be found in the ALICE, ATLAS, and CMS Muon Systems. RPCs detectors are operated with a freon-based gas mixture containing C2H2F4 and SF6, both greenhouse gases (GHGs) with a very high global warming potential (GWP), 1430 and 22800 respectively. These gases, together with CF4 and C4F10, are responsible for 70% of CERN operation's direct greenhouse gas emission. Moreover, the European Union defines a set of regulations aiming at reducing the GHG emissions from fluorinated gases. This regulation could bring to have lower availability and higher costs in the future. The present work is related to one of the strategies delineated by the CERN gas group to reduce GHG emissions: the search for eco-friendly gas mixtures for RPCs detectors. The first part of the thesis is focused on the study and characterization of RPC performances with these new gas mixtures in the laboratory environment. Some alternative to C2H2F4 were tested, such as CO2, He and HFO1234ze. This last one is a molecule in the family of HydroFluoroOlefins with a GWP of 7. Furthermore, Novec 4710 was tested as a substitution of SF6 since it presents a good electronegativity and a GWP of 2100. The RPC performances were evaluated by studying the detector’s efficiency, currents, streamer probability, prompt charge, cluster size, and time resolution. The second part of this thesis deals with RPC detectors tested at the CERN Gamma Irradiation Facility with some of the alternative gas mixtures. Here the RPC performances were studied under a similar LHC experiment radiation background, thanks to a 12 TBq 137 Cs source and a muon beam, provided by the SPS accelerator. This studies also allow to investigate the behavior of the single gas component of the mixtures. The main outcome is that substituting 30% R134a concentration with He or CO2 does not imply any change in RPC performance with respect to the standard gas mixture. Moreover, it is possible to see that an increase of the SF6 concentration together with a decrease of the ratio between R134a and HFO1234ze brings to an increase in the currents and to a drop in the efficiency with respect to the STD gas mixture, in a condition of gamma rates of about 600 Hz/cm^2. The Novec 4710 seems promising as a SF6 substitute with 0.1% concentration although it is known that it can react with water. Studies of the production of possible compounds is ongoing as well as validation tests both in laboratory condition and in test beams with high particle rate environment.
Presso gli esperimenti LHC del CERN sono in funzione diversi rivelatori a gas. In particolare possiamo trovare gli Resistive Plate Chambers (RPC) nei rivelatori di muoni di ALICE, ATLAS e CMS. I rivelatori RPC funzionano con una miscela di gas a base di freon che contiene C2H2F4 e SF6, entrambi gas serra (GHG) con un potenziale di riscaldamento globale (GWP) molto alto: 1430 e 22800 rispettivamente. Questi gas sono responsabili, insieme a CF4 e C4F10, del 70% delle emissioni dirette di gas serra del CERN. Inoltre l'UE ha definito un insieme di norme che mirano a ridurre le emissioni di gas serra dovute ai gas fluorinati. Queste norme potrebbero portare in futuro ad una minore reperibilità e a maggiori costi. Questo lavoro di tesi riguarda una delle strategie adottate dal CERN per ridurre le emissioni di gas serra, ovvero la ricerca di gas sostenibili a livello ambientale per le RPC. La prima parte della tesi si concentra sullo studio e sulla caratterizzazione delle performance delle RPC operate con queste nuove miscele di gas nell'ambiente controllato del laboratorio. Sono state testate alcune alternative al C2H2F4, come la CO2, l'He e l'HFO1234ze. Quest'ultimo è una molecola appartenente alla famiglia degli HydroFluoroOlefin con un GWP pari a 7. Inoltre il Novec 4710 è stato testato come alternativa all'SF6, dal momento che presenta una buona elettronegatività e un GWP di 2100. Le performance degli RPC è stata valutata studiandone l'efficienza, le correnti, la streamer probability, la prompt charge, la cluster size e la risoluzione temporale. La seconda parte della tesi si concentra sugli RPC testati, con alcune miscele di gas alternative, alla Gamma Irradiation Facility del CERN. Qui le performance degli RPC sono state studiate sotto un fondo di radiazione simile a quello degli esperimenti di LHC. Questa condizione di irraggiamento è ottenuta grazie a una sorgente di 137 Cs con un'attività di 12 TBq e da un fascio di muoni, fornito dall'acceleratore SPS. Questi studi permettono di indagare il comportamento dei singoli gas che compongono le miscele. Il risultato principale è che la sostituzione del 30% di R134a con He o CO2 non produce nessun cambiamento nel comportamento degli RPC rispetto alla miscela standard. Inoltre è possibile notare che un aumento della concentrazione di SF6 insieme alla diminuzione del rapporto tra R134a e HFO1234ze comporta un aumento delle correnti e una diminuzione dell'efficienza rispetto alla miscela standard, in una condizione di irraggiamento circa pari a 600 Hz/cm^2. Il gas Novec 4710 sembra promettente come sostituto dell'SF6 in una concentrazione dello 0.1% anche se è noto che possa reagire con l'acqua. Si stanno attualmente svolgendo studi sulla possibile produzione di composti dovuti a questa reazione, come anche si stanno continuando i test di validazione sia nelle condizioni di laboratorio che al test beam, ovvero in un ambiente con un'alta radiazione di fondo.
Studio su miscele di gas eco-friendly per rivelatori RPC agli esperimenti LHC del CERN.
VERZEROLI, MATTIA
2020/2021
Abstract
Several gaseous detectors are operated at the CERN LHC experiments. In particular, Resistive Plate Chambers (RPCs) can be found in the ALICE, ATLAS, and CMS Muon Systems. RPCs detectors are operated with a freon-based gas mixture containing C2H2F4 and SF6, both greenhouse gases (GHGs) with a very high global warming potential (GWP), 1430 and 22800 respectively. These gases, together with CF4 and C4F10, are responsible for 70% of CERN operation's direct greenhouse gas emission. Moreover, the European Union defines a set of regulations aiming at reducing the GHG emissions from fluorinated gases. This regulation could bring to have lower availability and higher costs in the future. The present work is related to one of the strategies delineated by the CERN gas group to reduce GHG emissions: the search for eco-friendly gas mixtures for RPCs detectors. The first part of the thesis is focused on the study and characterization of RPC performances with these new gas mixtures in the laboratory environment. Some alternative to C2H2F4 were tested, such as CO2, He and HFO1234ze. This last one is a molecule in the family of HydroFluoroOlefins with a GWP of 7. Furthermore, Novec 4710 was tested as a substitution of SF6 since it presents a good electronegativity and a GWP of 2100. The RPC performances were evaluated by studying the detector’s efficiency, currents, streamer probability, prompt charge, cluster size, and time resolution. The second part of this thesis deals with RPC detectors tested at the CERN Gamma Irradiation Facility with some of the alternative gas mixtures. Here the RPC performances were studied under a similar LHC experiment radiation background, thanks to a 12 TBq 137 Cs source and a muon beam, provided by the SPS accelerator. This studies also allow to investigate the behavior of the single gas component of the mixtures. The main outcome is that substituting 30% R134a concentration with He or CO2 does not imply any change in RPC performance with respect to the standard gas mixture. Moreover, it is possible to see that an increase of the SF6 concentration together with a decrease of the ratio between R134a and HFO1234ze brings to an increase in the currents and to a drop in the efficiency with respect to the STD gas mixture, in a condition of gamma rates of about 600 Hz/cm^2. The Novec 4710 seems promising as a SF6 substitute with 0.1% concentration although it is known that it can react with water. Studies of the production of possible compounds is ongoing as well as validation tests both in laboratory condition and in test beams with high particle rate environment.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/14490