In the field of oncology research, relating to breast cancer, the thesis work developed around the use of the 3D printer. The chosen 3D printer was the CellInk BioX, which falls within the field of Bioprinting, simultaneously using an external heating source and a pressure applied from above, aiming to extrude the material previously loaded inside the cartridge. The use of TinkerCAD (Computer-Aided Design) software led to designing and subsequently manufacturing subcutaneous polymer-based implants, loaded with chemotherapy drugs and nanoparticles. The implant is supposed to be two layers-based, placed one on top of the other, but with different functions, in order to ensure a more effective and synergistic therapy, compared to the conventional treatments. The first layer involved the use of polymers such as Poly-Ꜫ-Caprolactone (PCL) and Chitosan (CS), inside which the drug 5-Fluorouracil (5-FU) was loaded. The aim of the first layer is to release the drug within 4 weeks, obtaining a prolonged and modified release. The second layer, on the other hand, used exclusively PCL as a polymeric matrix, into which Gold Nanoparticles (AuNPs) were subsequently loaded, whose main purpose is to be irradiated by electromagnetic radiation, to be heated up and, through the release of generated heat, to target tumour cells. The implants were characterized from a physico-chemical point of view using DSC, TGA, FTIR, XRD, uCT to analyze the biocompatibility of polymeric materials and drugs with the subcutaneous administration of the implant. Mechanical tests and release studies, using an In Vitro release model, were performed in order to understand how the implant behaves following external stimuli and in order to obtain a drug concentration within the therapeutic concentration.
Nell’ambito della ricerca oncologica, in particolare relativo al tumore della mammella, il lavoro di tesi si è sviluppato intorno all’utilizzo della Stampante 3D. La stampante 3D selezionata è la CellInk BioX, che rientra nel campo del Bioprinting, sfrutta contemporaneamente una fonte di riscaldamento esterno e una pressione applicata dall’alto per estrudere il materiale caricato all’interno della cartuccia. Sono stati progettati con l’utilizzo del software TinkerCAD (Computer-Aided Design) e successivamente fabbricati impianti sottocutanei a base polimerica, caricati con farmaci chemioterapici e nanoparticelle. L’idea alla base dell’impianto presuppone la presenza di due strati, posti uno sopra l’altro, ma con differente funzione, al fine di assicurare una terapia sinergica più efficace rispetto ai trattamenti convenzionali. Il primo strato ha previsto l’utilizzo di polimeri quali Poly-Ꜫ-Caprolattone (PCL) e Chitosano (CS), all’interno del quale è stato caricato il farmaco 5-Fluorouracile (5-FU). L’obiettivo del primo strato è rilasciare il farmaco nell’arco di 4 settimane, ottenendo un rilascio prolungato e modificato. Il secondo strato invece ha utilizzato esclusivamente il PCL come base polimerica, nella quale sono state caricate successivamente nanoparticelle di oro (AuNPs), il cui scopo principale è l’essere irraggiate da radiazioni elettromagnetiche, scaldarsi e, tramite il rilascio di calore, targhettizzare cellule tumorali. Gli impianti sono stati caratterizzati da un punto di vista chimico-fisico tramite DSC, TGA, FTIR, XRD, uCT per analizzare la biocompatibilità di materiali polimerici e farmaci con la somministrazione sottocutanea dell’impianto. Prove meccaniche e studi di rilascio, utilizzando un modello In Vitro, sono stati eseguiti, al fine di comprendere come l’impianto si comporti in reazione a stimoli esterni e al fine di ottenere una concentrazione di farmaco all’interno della concentrazione terapeutica.
Fabbricazione di impianti biodegradabili stampati in 3D per cura e trattamento del tumore al seno.
DI LUCA, MATTEO
2021/2022
Abstract
In the field of oncology research, relating to breast cancer, the thesis work developed around the use of the 3D printer. The chosen 3D printer was the CellInk BioX, which falls within the field of Bioprinting, simultaneously using an external heating source and a pressure applied from above, aiming to extrude the material previously loaded inside the cartridge. The use of TinkerCAD (Computer-Aided Design) software led to designing and subsequently manufacturing subcutaneous polymer-based implants, loaded with chemotherapy drugs and nanoparticles. The implant is supposed to be two layers-based, placed one on top of the other, but with different functions, in order to ensure a more effective and synergistic therapy, compared to the conventional treatments. The first layer involved the use of polymers such as Poly-Ꜫ-Caprolactone (PCL) and Chitosan (CS), inside which the drug 5-Fluorouracil (5-FU) was loaded. The aim of the first layer is to release the drug within 4 weeks, obtaining a prolonged and modified release. The second layer, on the other hand, used exclusively PCL as a polymeric matrix, into which Gold Nanoparticles (AuNPs) were subsequently loaded, whose main purpose is to be irradiated by electromagnetic radiation, to be heated up and, through the release of generated heat, to target tumour cells. The implants were characterized from a physico-chemical point of view using DSC, TGA, FTIR, XRD, uCT to analyze the biocompatibility of polymeric materials and drugs with the subcutaneous administration of the implant. Mechanical tests and release studies, using an In Vitro release model, were performed in order to understand how the implant behaves following external stimuli and in order to obtain a drug concentration within the therapeutic concentration.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/14540