A classical operational probabilistic theory has been constructed which possesses a property normally considered to be characteristic of quantum mechanics: "no information without disturbance". This theory, called Minimal Bi-local Classical Theory (or MBCT), was obtained from another recently proposed called Bi-local Classical Theory, in which all systems are classical and all pure states of composite systems are entangled, through a restriction of the spaces of transformations and instruments. In particular, it has been assumed that these contain the minimum elements necessary to construct a well defined and coherent theory. The only instruments allowed are those obtainable from the composition of preparations and observations with the identity and the braiding defined as deterministic transformations. The same assumption, appropriately modified, is also made in the case of transformations. Within this work the fact that this theory is well defined is shown, focusing in particular on the study of the closure with respect to the operational norm of the spaces of transformations and instruments, and subsequently a discussion is carried out on the properties it satisfies and the consequences that this entails. In conclusion, two open problems originating from this work will be discussed. The first concerns an extension of this theory in the event that the set of instruments is enriched through the addition of the property of strong-causality, while the second relates to the definition of uncertainty for generic operational probabilistic theories. The latter is of interest as MBCT is the ideal candidate to demonstrate that incompatibility does not imply uncertainty.
E' stata costruita una teoria operazionale probabilistica classica che possiede una proprietà normalmente considerata caratteristica della meccanica quantistica: "no-information without disturbance". La teoria, chiamata Minimal Bi-local Classical Theory (o MBCT), è stata ottenuta a partire da un'altra recentemente proposta chiamata Bilocal Classical Thoery, in cui tutti i sistemi sono classici e tutti gli stati puri dei sistemi composti sono entangled, attraverso una restrizione degli spazi delle trasformazioni e degli strumenti. In particolare si è supposto che questi contengano i minimi elementi necessari per costruire una teoria ben definita e coerente. Gli unici strumenti permessi sono quelli ottenibili come composizione di preparazioni e misurazioni con l’identità e il braiding definite come trasformazioni deterministiche. La stessa assunzione, appositamente modificata, è stata fatta anche nel caso delle trasformazioni. All’interno di questo lavoro viene mostrato che questa teoria risulta essere ben definita, concentrandosi in particolare sullo studio della chiusura dal punto di vista della norma operazionale degli spazi delle trasformazioni e degli strumenti, e successivamente viene effettuata una discussione sulle proprietà da essa soddisfatte e le conseguenze che ciò comporta. In conclusione verranno poi discussi due problemi aperti originati da questo lavoro. Il primo riguarda un’estensione di questa teoria nel caso in cui si arricchisca il panorama degli strumenti attraverso l’aggiunta della proprietà di strong-causality, mentre il secondo è relativo alla definizione dell’incertezza per generiche teorie operazionali probabilistiche. Quest’ultimo è di interesse in quanto la MBCT risulta essere il candidato ideale per dimostrare che incompatibility non implica uncertainty.
Una teoria classica con misurazioni incompatibili
ROLINO, DAVIDE
2021/2022
Abstract
A classical operational probabilistic theory has been constructed which possesses a property normally considered to be characteristic of quantum mechanics: "no information without disturbance". This theory, called Minimal Bi-local Classical Theory (or MBCT), was obtained from another recently proposed called Bi-local Classical Theory, in which all systems are classical and all pure states of composite systems are entangled, through a restriction of the spaces of transformations and instruments. In particular, it has been assumed that these contain the minimum elements necessary to construct a well defined and coherent theory. The only instruments allowed are those obtainable from the composition of preparations and observations with the identity and the braiding defined as deterministic transformations. The same assumption, appropriately modified, is also made in the case of transformations. Within this work the fact that this theory is well defined is shown, focusing in particular on the study of the closure with respect to the operational norm of the spaces of transformations and instruments, and subsequently a discussion is carried out on the properties it satisfies and the consequences that this entails. In conclusion, two open problems originating from this work will be discussed. The first concerns an extension of this theory in the event that the set of instruments is enriched through the addition of the property of strong-causality, while the second relates to the definition of uncertainty for generic operational probabilistic theories. The latter is of interest as MBCT is the ideal candidate to demonstrate that incompatibility does not imply uncertainty.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/14937