Drug discovery is the process through which potential new medicines are identified. With modern fabrication, imaging and computational analysis technologies, high-throughput screening (HTS) of ever larger compound libraries has become possible using dedicated platforms with 96/384/1536 microwells to grow 2D cell cultures. Unfortunately, standard HTS platform use rigid plastic or glass supports (~1 GPa Young modulus) to grow cells onto, but cells in most native tissues and organs are embedded in more compliant matrices (ranging 10-1000 kPa). While elastomers and hydrogels can be prepared to have biomimetic stiffness, casting them in the microwells needed for HTS leads to the formation of a meniscus that decreases the quality of microscopic images that can be taken from these engineered HTS platforms. To overcome this problem, we decided to create an HTS platform using independent components: 1) a microwell-carrying top built of silicone (PDMS) cast into a 3D printed disposable mold; 2) a PDMS coated glass slide; and 3) a manually applied layer of sealing PDMS. This approach has three advantages. First, by preparing the soft silicone on the glass independently from the microwell-carrying top, we avoid the formation of menisci. Second, we can further engineer the PDMS-coated glass using traditional soft lithography techniques such as microcontact printing. Third, by using PDMS throughout the fabrication, we can ensure accurate gluing of the two components without introducing external adhesives. To create a homogeneous layer of the substrate, we used a spin-coater to spread the PDMS on the slide, and we let it cure at room temperature for 48 h. In this manner, layers 30-100s um thick can be obtained. Afterwards, we used microcontact printing to stamp adhesive islands to control cell and tissue shapes on PDMS-coated glass, as demonstrated using fluorescent microscopy. Finally, we designed a mold for a proof-of-concept 15 well top (with the same well-size of a 96 well plate) and used an off-the-shelf FFF 3D printer to fabricate it in PLA. From that mold we then casted the PDMS tops. We glued the tops and microcontact printed glasses using uncured PDMS and demonstrated that the wells become well-sealed after 48 h curing using food-colorants. These results suggest that is possible to realize a simple and economic HTS platform that features engineered stiffness and cell/tissue geometry. In the future, different techniques can be applied to mold creation (eg, SLA printing) and substrate engineering (eg, photopatterning) so a wider selection of materials can be used for manufacturing engineered HTS platforms.

Introduzione. Il drug discovery è il processo attraverso il quale vengono identificati potenziali nuovi farmaci. L’avvento di moderne tecniche di fabbricazione, imaging a analisi computazionale ha permesso di estendere l’utilizzo dell’high throughput screening (HTS) a librerie sempre maggiori di compound, sfruttando piattaforme da 96/384/1536 pozzetti per la crescita di colture cellulari 2D. Purtroppo, nelle piattaforme HTS standard le cellule vengono coltivate su plastica rigida o supporti di vetro (~1 GPa di modulo di Young), mentre nella maggior parte dei loro tessuti nativi sono immerse in matrici con maggior compliance (modulo di Young nel range di 10-1000 kPa). Elastomeri e Idrogel possono essere preparati in modo da avere una compliance adeguata, ma quando vengono castati nei pozzetti delle piattaforme HTS provocano la formazione di un menisco, che diminuisce la qualità dell’imaging microscopico che può essere eseguito sulle piattaforme. Obiettivo. Per superare questo problema, abbiamo deciso di creare una piattaforma HTS utilizzando componenti indipendenti: 1) un top che contiene i micropozzetti realizzato castando silicone (PDMS) all’interno di una mold stampata in 3D; 2) un vetrino rivestito di PDMS; e 3) uno strato legante di PDMS applicato manualmente. Questo approccio ha tre vantaggi. Primo, preparando il rivestimento di silicone del vetrino indipendentemente dal top, si evita la formazione di menischi. Secondo, il vetrino rivestito di silicone può essere ulteriormente ingegnerizzato utilizzando tecniche tradizionali di soft lithography, quali il microcontact printing. Terzo, grazie all’utilizzo del PDMS nelle varie fasi della fabbricazione, possiamo assicurare un buon incollaggio delle due componenti della piattaforma senza introdurre adesivi esterni. Risultati. Per creare un rivestimento siliconico omogeneo, abbiamo ricoperto il vetrino di PDMS utilizzando uno spin-coater, e lo abbiamo lasciato curare a temperatura ambiente per 48 h. In seguito, abbiamo sfruttato la tecnica del microcontact printing per stampare isolette adesive sul PDMS, in modo da 5 controllare la forma delle cellule, come dimostrato utilizzando la microscopia a fluorescenza. Infine, abbiamo progettato uno stampo per un top ‘proof-of-concept’ da 15 pozzetti (con pozzetti della stessa dimensione di quelli della 96-well plate) e lo abbiamo stampato in PLA e ABS utilizzando una stampante 3D con tecnologia FFF. Da quello stampo abbiamo castato il top di PDMS. Abbiamo infine incollato tra di loro il top e il vetrino su cui era stato eseguito il microcontact printing, e abbiamo dimostrato che dopo 48 h i pozzetti erano a tenuta, utilizzando un colorante da cucina. Conclusioni. Questi risultati suggeriscono che è possibile realizzare una piattaforma HTS semplice e economica, che riproduca la rigidità dei tessuti biologici e la geometria cellulare/tissutale. In futuro si possono utilizzare diverse tecniche per la creazione dello stampo (es. Stampa 3D con tecnologia SLA) e l’ingegnerizzazione del substrato (es. Photopatterning), in modo da poter sfruttare una gamma piu’ estesa di materiali per la realizzazione di piattaforme HTS ingegnerizzate.

Design and prototyping of an easy to build and inexpensive engineered culture platform for high throughput screening.

HORDA, BOHDANA
2021/2022

Abstract

Drug discovery is the process through which potential new medicines are identified. With modern fabrication, imaging and computational analysis technologies, high-throughput screening (HTS) of ever larger compound libraries has become possible using dedicated platforms with 96/384/1536 microwells to grow 2D cell cultures. Unfortunately, standard HTS platform use rigid plastic or glass supports (~1 GPa Young modulus) to grow cells onto, but cells in most native tissues and organs are embedded in more compliant matrices (ranging 10-1000 kPa). While elastomers and hydrogels can be prepared to have biomimetic stiffness, casting them in the microwells needed for HTS leads to the formation of a meniscus that decreases the quality of microscopic images that can be taken from these engineered HTS platforms. To overcome this problem, we decided to create an HTS platform using independent components: 1) a microwell-carrying top built of silicone (PDMS) cast into a 3D printed disposable mold; 2) a PDMS coated glass slide; and 3) a manually applied layer of sealing PDMS. This approach has three advantages. First, by preparing the soft silicone on the glass independently from the microwell-carrying top, we avoid the formation of menisci. Second, we can further engineer the PDMS-coated glass using traditional soft lithography techniques such as microcontact printing. Third, by using PDMS throughout the fabrication, we can ensure accurate gluing of the two components without introducing external adhesives. To create a homogeneous layer of the substrate, we used a spin-coater to spread the PDMS on the slide, and we let it cure at room temperature for 48 h. In this manner, layers 30-100s um thick can be obtained. Afterwards, we used microcontact printing to stamp adhesive islands to control cell and tissue shapes on PDMS-coated glass, as demonstrated using fluorescent microscopy. Finally, we designed a mold for a proof-of-concept 15 well top (with the same well-size of a 96 well plate) and used an off-the-shelf FFF 3D printer to fabricate it in PLA. From that mold we then casted the PDMS tops. We glued the tops and microcontact printed glasses using uncured PDMS and demonstrated that the wells become well-sealed after 48 h curing using food-colorants. These results suggest that is possible to realize a simple and economic HTS platform that features engineered stiffness and cell/tissue geometry. In the future, different techniques can be applied to mold creation (eg, SLA printing) and substrate engineering (eg, photopatterning) so a wider selection of materials can be used for manufacturing engineered HTS platforms.
2021
Design and prototyping of an easy to build and inexpensive engineered culture platform for high throughput screening.
Introduzione. Il drug discovery è il processo attraverso il quale vengono identificati potenziali nuovi farmaci. L’avvento di moderne tecniche di fabbricazione, imaging a analisi computazionale ha permesso di estendere l’utilizzo dell’high throughput screening (HTS) a librerie sempre maggiori di compound, sfruttando piattaforme da 96/384/1536 pozzetti per la crescita di colture cellulari 2D. Purtroppo, nelle piattaforme HTS standard le cellule vengono coltivate su plastica rigida o supporti di vetro (~1 GPa di modulo di Young), mentre nella maggior parte dei loro tessuti nativi sono immerse in matrici con maggior compliance (modulo di Young nel range di 10-1000 kPa). Elastomeri e Idrogel possono essere preparati in modo da avere una compliance adeguata, ma quando vengono castati nei pozzetti delle piattaforme HTS provocano la formazione di un menisco, che diminuisce la qualità dell’imaging microscopico che può essere eseguito sulle piattaforme. Obiettivo. Per superare questo problema, abbiamo deciso di creare una piattaforma HTS utilizzando componenti indipendenti: 1) un top che contiene i micropozzetti realizzato castando silicone (PDMS) all’interno di una mold stampata in 3D; 2) un vetrino rivestito di PDMS; e 3) uno strato legante di PDMS applicato manualmente. Questo approccio ha tre vantaggi. Primo, preparando il rivestimento di silicone del vetrino indipendentemente dal top, si evita la formazione di menischi. Secondo, il vetrino rivestito di silicone può essere ulteriormente ingegnerizzato utilizzando tecniche tradizionali di soft lithography, quali il microcontact printing. Terzo, grazie all’utilizzo del PDMS nelle varie fasi della fabbricazione, possiamo assicurare un buon incollaggio delle due componenti della piattaforma senza introdurre adesivi esterni. Risultati. Per creare un rivestimento siliconico omogeneo, abbiamo ricoperto il vetrino di PDMS utilizzando uno spin-coater, e lo abbiamo lasciato curare a temperatura ambiente per 48 h. In seguito, abbiamo sfruttato la tecnica del microcontact printing per stampare isolette adesive sul PDMS, in modo da 5 controllare la forma delle cellule, come dimostrato utilizzando la microscopia a fluorescenza. Infine, abbiamo progettato uno stampo per un top ‘proof-of-concept’ da 15 pozzetti (con pozzetti della stessa dimensione di quelli della 96-well plate) e lo abbiamo stampato in PLA e ABS utilizzando una stampante 3D con tecnologia FFF. Da quello stampo abbiamo castato il top di PDMS. Abbiamo infine incollato tra di loro il top e il vetrino su cui era stato eseguito il microcontact printing, e abbiamo dimostrato che dopo 48 h i pozzetti erano a tenuta, utilizzando un colorante da cucina. Conclusioni. Questi risultati suggeriscono che è possibile realizzare una piattaforma HTS semplice e economica, che riproduca la rigidità dei tessuti biologici e la geometria cellulare/tissutale. In futuro si possono utilizzare diverse tecniche per la creazione dello stampo (es. Stampa 3D con tecnologia SLA) e l’ingegnerizzazione del substrato (es. Photopatterning), in modo da poter sfruttare una gamma piu’ estesa di materiali per la realizzazione di piattaforme HTS ingegnerizzate.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14239/15076