Embryonic Lethal Abnormal Vision (ELAV) proteins belong to the class of RNA- Binding Proteins (RBPs) whose main role is to form complexes able to stabilize mRNAs thus modulating the production of the proteins. Recent research has demonstrated that post-transcriptional modifications, particularly those connected to changes in the expression of the ELAV protein, are frequently linked to the onset of cancer, inflammatory diseases, and neurodegenerative diseases. These proteins are thus an intriguing and innovative pharmaceutical target for the treatment of these diseases. A chemical-pharmaceutical approach can be used to identify small molecules that can modify the stability and/or formation of complexes with RBPs to prevent the binding of RBPs with mRNA and restore proper translation of post-transcriptionally controlled proteins involved in the pathogenic process. In the MedChemLab the ELAV proteins have been investigated from a medicinal chemistry perspective for many years, focusing on the HuR subtype, involved in tumors or retinopathies. A putative binding site on the HuR protein was hypothesized for the first time using a combined NMR and molecular modeling approach and then it is used for the design of new ligands of first generation. These new molecules were synthesized and their interaction with HuR was evaluated by ligand based NMR techniques in order to drive the design of new potent ligands. In this thesis the interaction between the HuR protein and novel potential ligands of second generation was investigated using Saturation Transfer Difference (STD)-NMR. STD-NMR method is used for the analysis of the interaction between a molecule and its biological target in solution, allowing the identification of ligand epitope. This technique is based on the selective irradiation of the protein and the consequent magnetization transfer from the protein to the ligand interacting in a specific binding site. In the STD spectrum only the signals from ligand protons in contact with the protein can be observed. The intensities of these signals are correlated with the distance of the ligand protons to the protein residues. This method, however, does not reveal any information about the type of protein amino acids that surround the ligand in the binding pocket. In this thesis four new compounds were firstly characterized and then their ability to interact with the HuR with a specific epitope was demonstrated. Subsequently, competition experiments were conducted to verify that these molecules can bind HuR in the mRNA binding site (and not in a secondary site). For this purpose, competition studies were performed using a PNA decamer able to mimic the natural RNA fragment and for which it has already been shown that it can bind the protein. The aim of this experiment is to verify that the new ligands can interfere with (and, possibly, are able to prevent) the HuR-mRNA complex formation. The findings of this thesis, confirming that the selected ligands can bind the RNA binding site of HuR, offer important knowledge for the design and discovery of new compounds that can be potential drugs for several pathologies involving ELAV proteins.
Le proteine ELAV (Embryonic Lethal Abnormal Vision) appartengono alla classe delle RNA-Binding Proteins (RBPs) il cui ruolo principale è quello di formare complessi in grado di stabilizzare gli mRNA così da modulare la produzione delle proteine da essi codificate. Recenti ricerche hanno dimostrato che le modificazioni post-trascrizionali, in particolare quelle legate a cambiamenti nell'espressione della proteina ELAV, sono spesso legate all'insorgenza di cancro, malattie infiammatorie e neurodegenerative. Queste proteine rappresentano quindi un bersaglio farmaceutico interessante e innovativo per il trattamento di queste malattie. Una strategia per impedire il legame delle RBPs con l’mRNA e ripristinare (in un processo patogenico) una corretta traduzione delle proteine controllate a livello post-trascrizionale consiste nell’individuare piccole molecole in grado di modulare la stabilità e/o la formazione di complessi mRNA- RBPs. Il gruppo di ricerca del MedChemLab si occupa da anni dello studio delle proteine ELAV da un punto di vista chimico-farmaceutico. Delle diverse isoforme umane della proteina ELAV, la ricerca condotta si concentra sul sottotipo HuR, la cui sovraespressione ed iperattivazione è stata osservata in diverse neoplasie o retinopatie. E’ stato ipotizzato per la prima volta un potenziale sito di legame sulla proteina HuR utilizzando un approccio combinato di NMR e dinamica molecolare ed è stato poi utilizzato per la progettazione di nuovi ligandi di prima generazione. Queste nuove molecole sono state sintetizzate e la loro interazione con HuR è stata valutata con tecniche NMR ligand-based, al fine di orientare la progettazione di nuove molecole. In questa tesi è stata studiata l'interazione tra la proteina HuR e nuovi potenziali ligandi di seconda generazione utilizzando il metodo Saturation Transfer Difference (STD)-NMR. Il metodo STD-NMR è utilizzato per l'analisi dell'interazione tra una piccola molecola e il suo bersaglio biologico in soluzione, consentendo l'identificazione dell'epitopo del ligando. Questa tecnica si basa sull'irradiazione selettiva della proteina e sul conseguente trasferimento di magnetizzazione dalla proteina al ligando che interagisce in uno specifico sito di legame. Nello spettro STD si possono osservare solo i segnali dei protoni del ligando a contatto con la proteina. L'intensità di questi segnali è correlata alla distanza dei protoni del ligando dai residui della proteina. Questo metodo, tuttavia, non rivela alcuna informazione diretta sul tipo di amminoacidi che circondano il ligando nella tasca di legame. In questa tesi sono stati dapprima caratterizzati quattro nuovi composti e poi è stata dimostrata la loro capacità di interagire con la proteina HuR. Successivamente, sono stati condotti esperimenti di competizione per verificare che queste molecole possano legare HuR nel sito di legame dell'mRNA (e non in un sito secondario). A tal fine, sono stati eseguiti studi di competizione utilizzando un decamero di PNA, mimico del ligando naturale e per il quale è già stato dimostrato che può legare la proteina. Lo scopo di questo esperimento è verificare che i nuovi ligandi possano interferire con la formazione del complesso HuR-mRNA (ed eventualmente inibirla). I risultati di questa tesi, che confermano la capacità dei nuovi composti di legare il sito di legame dell'RNA di HuR, saranno utilizzati per la progettazione e la scoperta di nuovi composti che possono rappresentare potenziali farmaci per diverse patologie che coinvolgono le proteine ELAV.
Caratterizzazione e screening di nuovi ligandi per la proteina HuR mediante la tecnica NMR STD (Saturation-Transfer Difference)
GABOARDI, MARTINA
2021/2022
Abstract
Embryonic Lethal Abnormal Vision (ELAV) proteins belong to the class of RNA- Binding Proteins (RBPs) whose main role is to form complexes able to stabilize mRNAs thus modulating the production of the proteins. Recent research has demonstrated that post-transcriptional modifications, particularly those connected to changes in the expression of the ELAV protein, are frequently linked to the onset of cancer, inflammatory diseases, and neurodegenerative diseases. These proteins are thus an intriguing and innovative pharmaceutical target for the treatment of these diseases. A chemical-pharmaceutical approach can be used to identify small molecules that can modify the stability and/or formation of complexes with RBPs to prevent the binding of RBPs with mRNA and restore proper translation of post-transcriptionally controlled proteins involved in the pathogenic process. In the MedChemLab the ELAV proteins have been investigated from a medicinal chemistry perspective for many years, focusing on the HuR subtype, involved in tumors or retinopathies. A putative binding site on the HuR protein was hypothesized for the first time using a combined NMR and molecular modeling approach and then it is used for the design of new ligands of first generation. These new molecules were synthesized and their interaction with HuR was evaluated by ligand based NMR techniques in order to drive the design of new potent ligands. In this thesis the interaction between the HuR protein and novel potential ligands of second generation was investigated using Saturation Transfer Difference (STD)-NMR. STD-NMR method is used for the analysis of the interaction between a molecule and its biological target in solution, allowing the identification of ligand epitope. This technique is based on the selective irradiation of the protein and the consequent magnetization transfer from the protein to the ligand interacting in a specific binding site. In the STD spectrum only the signals from ligand protons in contact with the protein can be observed. The intensities of these signals are correlated with the distance of the ligand protons to the protein residues. This method, however, does not reveal any information about the type of protein amino acids that surround the ligand in the binding pocket. In this thesis four new compounds were firstly characterized and then their ability to interact with the HuR with a specific epitope was demonstrated. Subsequently, competition experiments were conducted to verify that these molecules can bind HuR in the mRNA binding site (and not in a secondary site). For this purpose, competition studies were performed using a PNA decamer able to mimic the natural RNA fragment and for which it has already been shown that it can bind the protein. The aim of this experiment is to verify that the new ligands can interfere with (and, possibly, are able to prevent) the HuR-mRNA complex formation. The findings of this thesis, confirming that the selected ligands can bind the RNA binding site of HuR, offer important knowledge for the design and discovery of new compounds that can be potential drugs for several pathologies involving ELAV proteins.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/15206