Physics-Informed Neural Networks (PINNs) are particular deep learning based techniques, which can be used for solving partial differential equations. In particular, the Feed-forward Neural Network is trained to solve a supervised learning task while respecting a given law of physics, which is described by partial differential equations. The effectiveness of this technique has been shown in both forward and inverse problems for partial differential equations. For example, it has been used in classical problems in reaction-diffusion systems, quantum mechanics, wave propagation and fluids mechanics. Despite their success sometimes the neural network fails to achieve a good approximation, especially when the solution has a high frequency. In this master thesis, we explore the topic of Physics-Informed Neural Networks, by firstly giving all the necessary tools needed to understand Feed-forward Neural Networks. We then present how to obtain PINNs and why this technique can be useful in many real-world applications. Then we discuss some theoretical findings about the convergence of Physics-Informed Neural Networks for linear elliptic and parabolic type partial differential equations. Finally, we apply this technique to ionic models for neurons, in particular, we show the capability of approximating the FitzHugh-Nagumo model.

Le Physics-Informed Neural Networks (PINNs) sono delle particolare tecniche basate sull'apprendimento profondo, che vengono usate nella risoluzioni di equazioni alle derivate parziali. Più precisamente, la rete neurale è allenata nel risolvere un compito in modo supervisionato, mentre rispetta una determinata legge della fisica espressa attraverso un'equazione alle derivate parziali. Questa nuova metodologia si è dimostrata efficace nella risoluzione sia di problemi diretti, che inversi. L'efficacia di questa tecnica è stata dimostrata attraverso la soluzione di problemi classici come: sistemi di reazione e diffusione, meccanica quantistica, propagazione delle onde e meccanica dei fluidi. Nonostante il successo, ci sono ancora molte domande aperte sull'argomento; in particolare, a volte la rete neurale non riesce ad approssimare la soluzione, specialmente quando essa ha molte oscillazioni. In questa tesi magistrale, dopo aver introdotto tutti gli strumenti necessari per comprendere le reti neurali Feed-forward, andremo ad introdurre questa nuova metodologia. In particolare come si ottiene una PINN e il perché questo tipo di tecnica è utile in molte applicazioni, andremo poi a discutere alcuni risultati teorici sulla convergenza di queste reti neurali nel caso di equazioni alle derivate parziali lineari di tipo ellittico e parabolico. Infine applicheremo questo nuovo metodo di approssimazione al modello di FitzHugh-Nagumo per il potenziale d'azione.

Physics-Informed Neural Networks for Ionic Models in Computational Electrophysiology

PELLEGRINI, LUCA
2021/2022

Abstract

Physics-Informed Neural Networks (PINNs) are particular deep learning based techniques, which can be used for solving partial differential equations. In particular, the Feed-forward Neural Network is trained to solve a supervised learning task while respecting a given law of physics, which is described by partial differential equations. The effectiveness of this technique has been shown in both forward and inverse problems for partial differential equations. For example, it has been used in classical problems in reaction-diffusion systems, quantum mechanics, wave propagation and fluids mechanics. Despite their success sometimes the neural network fails to achieve a good approximation, especially when the solution has a high frequency. In this master thesis, we explore the topic of Physics-Informed Neural Networks, by firstly giving all the necessary tools needed to understand Feed-forward Neural Networks. We then present how to obtain PINNs and why this technique can be useful in many real-world applications. Then we discuss some theoretical findings about the convergence of Physics-Informed Neural Networks for linear elliptic and parabolic type partial differential equations. Finally, we apply this technique to ionic models for neurons, in particular, we show the capability of approximating the FitzHugh-Nagumo model.
2021
Physics-Informed Neural Networks for Ionic Models in Computational Electrophysiology
Le Physics-Informed Neural Networks (PINNs) sono delle particolare tecniche basate sull'apprendimento profondo, che vengono usate nella risoluzioni di equazioni alle derivate parziali. Più precisamente, la rete neurale è allenata nel risolvere un compito in modo supervisionato, mentre rispetta una determinata legge della fisica espressa attraverso un'equazione alle derivate parziali. Questa nuova metodologia si è dimostrata efficace nella risoluzione sia di problemi diretti, che inversi. L'efficacia di questa tecnica è stata dimostrata attraverso la soluzione di problemi classici come: sistemi di reazione e diffusione, meccanica quantistica, propagazione delle onde e meccanica dei fluidi. Nonostante il successo, ci sono ancora molte domande aperte sull'argomento; in particolare, a volte la rete neurale non riesce ad approssimare la soluzione, specialmente quando essa ha molte oscillazioni. In questa tesi magistrale, dopo aver introdotto tutti gli strumenti necessari per comprendere le reti neurali Feed-forward, andremo ad introdurre questa nuova metodologia. In particolare come si ottiene una PINN e il perché questo tipo di tecnica è utile in molte applicazioni, andremo poi a discutere alcuni risultati teorici sulla convergenza di queste reti neurali nel caso di equazioni alle derivate parziali lineari di tipo ellittico e parabolico. Infine applicheremo questo nuovo metodo di approssimazione al modello di FitzHugh-Nagumo per il potenziale d'azione.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14239/15536