Cystic fibrosis is a highly debilitating genetic disease caused by mutations in the CFTR gene (Cistic Fibrosis Transmembrane conductance Regulator), which encodes for a transmembrane channel involved in the coordination of electrolytes and fluids’ transport in many epithelial tissues, allowing to maintain proper hydration and a physiological pH of body surfaces. When the CFTR protein undergoes mutations, the ion transport regulated by CFTR no longer functions properly, resulting in the accumulation of extremely thick mucus throughout the body, which causes infections, inflammation, malabsorption of nutrients and obstruction of the ducts, compromising the function of the organs and therefore the survival of the patient. The damage to the respiratory system is the main cause of mortality among patients, and the damage is aggravated by the onset of chronic infections in the airways. Burkholderia cenocepacia is part of the Burkholderia cepacia complex (Bcc) and is one of the most dangerous pathogens in the context of lung infections in cystic fibrosis patients. Its pathogenicity derives from the fact that B. cenocepacia has many virulence factors that make it strongly epidemic, resistant to many antibiotics and capable of causing a serious decline in lung functions. Due to the high level of antibiotic resistance, it is very difficult to eradicate BCC pathogens, so developing a vaccine that confers protection against B. cenocepacia could be a solution. The aim of this project is to characterize the role of 2 putative antigen candidates selected through the reverse vaccinology approach: BCAL1524, a lipoprotein with a collagen-like triple helix structure, and BCAS0335, a trimeric truck transporter adhesion. To study these proteins, 2 deletion mutants of B. cenocepacia K56-2 were constructed. The mutants were then complemented. To characterize the role of BCAL1524 and BCAS0335 proteins in bacterial virulence, deletion mutants and complemented strains were evaluated for their growth capacity in Luria-Bertani (LB) and Artificial Sputum Medium (ASM) and for their antibiotic resistance against a panel of 10 compounds. In addition, some of their virulence factors were tested: the ability to form biofilms in LB and ASM, motility, aggregation in phosphate buffered saline buffer (PBS) and the ability to infect the Galleria melonella model organism. The presented data underline how the trimeric trucking adhesion BCAS0335 plays a role in the virulence of B. cenocepacia, especially in biofilm formation, minocycline resistance and infection. The collagen-like protein BCAL1524 has a role in bacterial self-aggregation and infection of the G. mellonella model organism. This makes BCAL1524 and BCAS0335 two promising putative antigen candidates.
Verso lo sviluppo di un vaccino contro Burkholderia cenocepacia: caratterizzazione di due possibili antigeni. La fibrosi cistica è una malattia genetica altamente debilitante causata da mutazioni nel gene CFTR (Cistic Fibrosis Transmembrane conductance Regulator), che codifica un canale transmembrana coinvolto nel coordinamento del trasporto di elettroliti e fluidi in molti tessuti epiteliali, permettendo di mantenere una corretta idratazione e un pH fisiologico delle superfici corporee. Quando la proteina CFTR subisce mutazioni, il trasporto ionico regolato da CFTR non funziona più correttamente, con conseguente accumulo di muco estremamente denso in tutto il corpo, che provoca infezioni, infiammazioni, malassorbimento di nutrienti e ostruzione dei dotti, compromettendo la funzione degli organi e quindi la sopravvivenza del paziente. I danni al sistema respiratorio sono la principale causa di mortalità tra i pazienti, danni che sono aggravati dall'instaurarsi di infezioni croniche nelle vie aeree. Burkholderia cenocepacia fa parte del Burkholderia cepacia complex (Bcc) ed è uno dei patogeni più pericolosi nel contesto delle infezioni polmonari nei pazienti affetti da fibrosi cistica. La sua pericolosità deriva dal fatto che B. cenocepacia possiede molti fattori di virulenza che lo rendono fortemente epidemico, resistente a molti antibiotici e in grado di provocare un grave declino delle funzioni polmonari. A causa dell'alto livello di resistenza agli antibiotici, è molto difficile eradicare i patogeni del Bcc, quindi sviluppare un vaccino che conferisca protezione contro B. cenocepacia potrebbe rappresentare una soluzione. Lo scopo di questo progetto è quello di caratterizzare il ruolo di 2 candidati antigeni selezionati attraverso l'approccio della reverse vaccinology: BCAL1524, una lipoproteina con una struttura a tripla elica simile al collagene, e BCAS0335, un’adesina autotrasportatore trimerico. Per studiare queste proteine, sono stati costruiti 2 mutanti di delezione di B. cenocepacia K56-2. I mutanti deleti sono stati poi complementati. Per caratterizzare il ruolo delle proteine BCAL1524 e BCAS0335 nella virulenza batterica, i mutanti deleti e i ceppi complementati sono stati valutati per la loro capacità di crescita in Luria-Bertani (LB) e Artificial Sputum Medium (ASM) e per la loro resistenza agli antibiotici contro un pannello di 10 composti. Inoltre, sono stati testati alcuni dei loro fattori di virulenza: la capacità di formare biofilm in LB e ASM, la motilità, l'aggregazione in tampone salino tamponato fosfato (PBS) e la capacità di infettare l’organismo modello Galleria mellonella.I dati presentati sottolineano come l'adesina autotrasportatrice trimerica BCAS0335 abbia un ruolo nella virulenza di B. cenocepacia, specialmente nella formazione di biofilm, nella resistenza alla minociclina e nell'infezione. La proteina simile al collagene BCAL1524 ha un ruolo nell'autoaggregazione batterica e nell'infezione dell’organismo modello G. mellonella. Ciò rende BCAL1524 e BCAS0335 due candidati antigeni molto promettenti.
Towards the development of a vaccine against Burkholderia cenocepacia: characterization of two antigen candidates
PROFUMO, CECILIA
2021/2022
Abstract
Cystic fibrosis is a highly debilitating genetic disease caused by mutations in the CFTR gene (Cistic Fibrosis Transmembrane conductance Regulator), which encodes for a transmembrane channel involved in the coordination of electrolytes and fluids’ transport in many epithelial tissues, allowing to maintain proper hydration and a physiological pH of body surfaces. When the CFTR protein undergoes mutations, the ion transport regulated by CFTR no longer functions properly, resulting in the accumulation of extremely thick mucus throughout the body, which causes infections, inflammation, malabsorption of nutrients and obstruction of the ducts, compromising the function of the organs and therefore the survival of the patient. The damage to the respiratory system is the main cause of mortality among patients, and the damage is aggravated by the onset of chronic infections in the airways. Burkholderia cenocepacia is part of the Burkholderia cepacia complex (Bcc) and is one of the most dangerous pathogens in the context of lung infections in cystic fibrosis patients. Its pathogenicity derives from the fact that B. cenocepacia has many virulence factors that make it strongly epidemic, resistant to many antibiotics and capable of causing a serious decline in lung functions. Due to the high level of antibiotic resistance, it is very difficult to eradicate BCC pathogens, so developing a vaccine that confers protection against B. cenocepacia could be a solution. The aim of this project is to characterize the role of 2 putative antigen candidates selected through the reverse vaccinology approach: BCAL1524, a lipoprotein with a collagen-like triple helix structure, and BCAS0335, a trimeric truck transporter adhesion. To study these proteins, 2 deletion mutants of B. cenocepacia K56-2 were constructed. The mutants were then complemented. To characterize the role of BCAL1524 and BCAS0335 proteins in bacterial virulence, deletion mutants and complemented strains were evaluated for their growth capacity in Luria-Bertani (LB) and Artificial Sputum Medium (ASM) and for their antibiotic resistance against a panel of 10 compounds. In addition, some of their virulence factors were tested: the ability to form biofilms in LB and ASM, motility, aggregation in phosphate buffered saline buffer (PBS) and the ability to infect the Galleria melonella model organism. The presented data underline how the trimeric trucking adhesion BCAS0335 plays a role in the virulence of B. cenocepacia, especially in biofilm formation, minocycline resistance and infection. The collagen-like protein BCAL1524 has a role in bacterial self-aggregation and infection of the G. mellonella model organism. This makes BCAL1524 and BCAS0335 two promising putative antigen candidates.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/15618