This thesis concerns the design and implementation of a sensor for methane gas detection. Methane is one of the most present greenhouse gases in the atmosphere and is certainly the most harmful to the planet. In Europe, about 59 % of gas leaks are caused by distribution networks, so it becomes necessary to have suitable instrumentation to monitor the pipes efficiently and continuously. In order to best achieve the goal, a device has been designed, the operating principle of which is based on the absorption spectroscopic technique called TDLAS. It requires the selection and preliminary study of the absorption spectrum of a specific gas to be analysed, in this case, methane. Its implementation requires the use of two basic components: a laser source that emits at the wavelength corresponding to one of the gas’s largest absorption lines and a photo-detector that is effective at the chosen wavelength range. The beam, directed toward the pipe, is collimated by a collimating lens, positioned at a distance such that the beam size can intercept as many of the gas molecules in the air as possible. Parallel to it is positioned the photo-detector, which is equipped with a collecting lens characterized by a sufficiently large diameter to ensure the collection of the greatest amount of back-scattered light from the pipe. The detection of the presence of the gas is made possible by the phenomenon of absorption: at particular wavelengths, each gas is able to absorb a certain amount of light proportional to its concentration present in the pathlength taken by the photons. This phenomenon results in a decrease in the intensity detected by the photodiode in the situation where the gas is present. The study of the amplitude of the signal detected by the photodiode, appropriately filtered and amplified, makes it possible to reconstruct the gas concentration due to leakage. In a measurement time of one second, the device presented in the paper is capable of detecting gas concentrations between 0.2 and 100 ppm*m guaranteeing the safety of inspection personnel by using the device at distances from pipes between 0.5 m and 50 m.
Progetto e realizzazione di un sensore laser per gas metano. La tesi riguarda la progettazione e l'implementazione di un sensore per la rivelazione di gas metano. Il metano è una dei gas serra più presenti in atmosfera e rappresenta certamente il più dannoso per il pianeta. In Europa circa il 59 % delle perdite di gas sono causate dalle reti di distribuzione, diventa quindi necessaria una strumentazione idonea al monitoraggio delle tubature in modo efficiente e continuo. Per poter raggiungere al meglio l’obbiettivo è stato progetto un dispositivo, il cui principio di funzionamento si basa sulla tecnica spettroscopica ad assorbimento denominata TDLAS. Essa richiede la scelta e lo studio preliminare dello spettro di assorbimento di uno specifico gas da analizzare, in questo caso, il metano. La sua realizzazione richiede l’utilizzo di due componenti fondamentali: una sorgente laser che emetta alla lunghezza d’onda corrispondente ad una delle righe di assorbimento di maggiore ampiezza del gas ed un foto-rivelatore che sia efficace all’ intervallo di lunghezza d’onda scelto. Il fascio, indirizzato verso la tubatura, viene collimato da una lente collimatrice, posizionata ad una distanza tale da poter avere una dimensione del fascio che possa intercettare il maggior numero possibile di molecole di gas presenti in aria. Parallelamente ad essa viene posizionato il foto-rivelatore, dotato di una lente caratterizzata da un diametro sufficientemente grande da garantire il raccoglimento della maggior quantità di luce retro-diffusa dalla tubatura. L’individuazione della presenza del gas è resa possibile dal fenomeno dell’assorbimento: a particolare lunghezze d’onda ogni gas è in grado di assorbire una certa quantità di luce proporzionale alla sua concentrazione presente nel percorso in aria compiuto dai fotoni. Questo fenomeno si traduce in una diminuzione dell’intensità rilevata dal fotodiodo nella situazione in cui il gas è presente. Lo studio dell’ampiezza del segnale rilevato dal fotodiodo, opportunamente filtrato e amplificato, permette di ricostruire la concentrazione di gas dovuta alla perdita. In un tempo di misura di un secondo il dispositivo presentato nel documento è in grado di rilevare concentrazioni di gas comprese tra 0.2 e 100 ppm*m garantendo la sicurezza del personale addetto ai controlli grazie all’utilizzo del dispositivo a distanze dalle tubature comprese tra 0.5 m e 50 m.
Design and realisation of a laser methane gas sensor
LASCALA, SILVIA
2021/2022
Abstract
This thesis concerns the design and implementation of a sensor for methane gas detection. Methane is one of the most present greenhouse gases in the atmosphere and is certainly the most harmful to the planet. In Europe, about 59 % of gas leaks are caused by distribution networks, so it becomes necessary to have suitable instrumentation to monitor the pipes efficiently and continuously. In order to best achieve the goal, a device has been designed, the operating principle of which is based on the absorption spectroscopic technique called TDLAS. It requires the selection and preliminary study of the absorption spectrum of a specific gas to be analysed, in this case, methane. Its implementation requires the use of two basic components: a laser source that emits at the wavelength corresponding to one of the gas’s largest absorption lines and a photo-detector that is effective at the chosen wavelength range. The beam, directed toward the pipe, is collimated by a collimating lens, positioned at a distance such that the beam size can intercept as many of the gas molecules in the air as possible. Parallel to it is positioned the photo-detector, which is equipped with a collecting lens characterized by a sufficiently large diameter to ensure the collection of the greatest amount of back-scattered light from the pipe. The detection of the presence of the gas is made possible by the phenomenon of absorption: at particular wavelengths, each gas is able to absorb a certain amount of light proportional to its concentration present in the pathlength taken by the photons. This phenomenon results in a decrease in the intensity detected by the photodiode in the situation where the gas is present. The study of the amplitude of the signal detected by the photodiode, appropriately filtered and amplified, makes it possible to reconstruct the gas concentration due to leakage. In a measurement time of one second, the device presented in the paper is capable of detecting gas concentrations between 0.2 and 100 ppm*m guaranteeing the safety of inspection personnel by using the device at distances from pipes between 0.5 m and 50 m.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/15730