Since the beginning of the pandemic, SARS-CoV-2 has caused unprecedented socio-economic impact. Despite the efforts made so far, the development of new drugs against SARS-CoV-2 lags behind and remains important to reduce the spread of the virus, alleviate symptoms, and decrease the number of hospitalizations and deaths. This work highlighted the development of Nsp10 ligands which inhibit the formation of its complex with Nsp14, therefore leading to loss of proofreading activity and the virus subsequent death (1). To achieve this, we explored two different approaches aimed at designing and identifying PPIs modulators. The first approach consisted in the fragment growing of hit 2E1 that was already identified at HIPS through the screening of a halogen-enriched fragment library (HEFL) by surface plasmon resonance (SPR) spectrometry. Based on this fragment (KD = 900 ± 30 µM by SPR) and through a rational approach, we have synthesized several derivatives in order to increase their affinity towards SARS-CoV-2 Nsp10 and to reveal an inhibition in vitro against the ExoN activity. This approach first involved several docking studies, the subsequent syntheses of the best results obtained, the evaluation of affinity with Nsp10 by means of various biophysical assays (Near-native MS, SPR and MST) and finally the evaluation of their activity through phenotypic assays. The second approach consisted in the identification of new hits through the use of protein-templated synthesis (PTS). In particular, we focused on the kinetic target-guided synthesis (KTGS) strategy, in which the target protein is allowed to catalyze the irreversible synthesis of its own ligands from a pool of reagents (2). Through these two projects, we were able to obtain new compounds with higher affinity towards Nsp10 (84 – 305 µM by SPR) and with promising activity in a whole-cell setting assay (IC50 = 5 – 49 µM). The results obtained indicated that further development of the derivatives presented in this work may represent an opportunity to discover new SARS-CoV-2 antivirals with an unprecedented mode of action (3). Bibliography (1) Saramago, M. et al. New targets for drug design: importance of nsp14/nsp10 complex formation for the 3’‐5’ exoribonucleolytic activity on SARS‐CoV‐2. FEBS J 288, 5130–5147 (2021). (2) Bosc, D. et al. Kinetic Target-Guided Synthesis: Reaching the Age of Maturity. J. Med. Chem. 63, 3817–3833 (2020). (3) Jumde, R. P. et al. Target-directed dynamic combinatorial chemistry affords inhibitors of Nsp10 as potential antivirals against SARS-CoV-2 (2023).
Dall'inizio della pandemia, l’infezione di COVID-19 ha causato un impatto socio-economico senza precedenti. Nonostante gli sforzi compiuti finora, lo sviluppo di nuovi farmaci contro il SARS-CoV-2 rimane di primaria importanza per ridurre la diffusione del virus, alleviare i sintomi e diminuire il numero di ricoveri e di decessi. Il presente lavoro si è incentrato sullo sviluppo di ligandi di Nsp10 che inibiscono la formazione del suo complesso con Nsp14, portando quindi alla perdita dell'attività di correzione di bozze e alla conseguente morte del virus stesso (1). Per raggiungere tale obiettivo abbiamo adottato due diversi approcci volti a progettare e identificare modulatori di questa interazione proteina-proteina (PPI). Il primo approccio consiste nello sviluppo di un hit (2E1) già identificato all'HIPS attraverso lo screening di una halogen-enriched fragment library (HEFL) mediante surface plasmon resonance (SPR) spectrometry. Sulla base di questo frammento (KD = 900 ± 30 µM mediante SPR) ed attraverso un approccio razionale, abbiamo sintetizzato diversi derivati al fine di aumentarne l'affinità verso Nsp10 e di rivelare un'inibizione in vitro dell'attività esoribonucleasica. Questo approccio ha previsto innanzitutto diversi studi di docking, la successiva sintesi dei migliori risultati ottenuti, la valutazione dell'affinità con Nsp10 mediante vari saggi biofisici (Near-native MS, SPR e MST) ed infine la valutazione della loro attività mediante saggi fenotipici. Il secondo approccio invece si è incentrato sull’identificazione di nuovi hits attraverso l'uso di protein-templated synthesis (PTS). In particolare, ci siamo concentrati sulla tecnica di kinetic target-guided synthesis (KTGS), in cui la proteina bersaglio è autorizzata a catalizzare la sintesi irreversibile dei propri ligandi da un pool di reagenti (2). Adottando queste due modalità, siamo riusciti a ottenere nuovi composti con una maggiore affinità verso Nsp10 (84 – 305 µM mediante SPR) e con un'attività promettente all’ interno di un whole-cell setting assay (IC50 = 5 – 49 µM). I risultati ottenuti indicano che l'ulteriore sviluppo dei derivati presentati in questo lavoro può rappresentare un'opportunità per l’individuazione di nuovi antivirali contro il SARS-CoV-2 aventi una modalità d'azione senza precedenti (3). Bibliografia (1) Saramago, M. et al. New targets for drug design: importance of nsp14/nsp10 complex formation for the 3’‐5’ exoribonucleolytic activity on SARS‐CoV‐2. FEBS J 288, 5130–5147 (2021). (2) Bosc, D. et al. Kinetic Target-Guided Synthesis: Reaching the Age of Maturity. J. Med. Chem. 63, 3817–3833 (2020). (3) Jumde, R. P. et al. Target-directed dynamic combinatorial chemistry affords inhibitors of Nsp10 as potential antivirals against SARS-CoV-2 (2023).
Sviluppo di inibitori della proteina non strutturale 10 (Nsp10) del SARS-CoV-2 per limitare l’attività esoribonucleasica di Nsp14
VINCENZI, PIETRO
2022/2023
Abstract
Since the beginning of the pandemic, SARS-CoV-2 has caused unprecedented socio-economic impact. Despite the efforts made so far, the development of new drugs against SARS-CoV-2 lags behind and remains important to reduce the spread of the virus, alleviate symptoms, and decrease the number of hospitalizations and deaths. This work highlighted the development of Nsp10 ligands which inhibit the formation of its complex with Nsp14, therefore leading to loss of proofreading activity and the virus subsequent death (1). To achieve this, we explored two different approaches aimed at designing and identifying PPIs modulators. The first approach consisted in the fragment growing of hit 2E1 that was already identified at HIPS through the screening of a halogen-enriched fragment library (HEFL) by surface plasmon resonance (SPR) spectrometry. Based on this fragment (KD = 900 ± 30 µM by SPR) and through a rational approach, we have synthesized several derivatives in order to increase their affinity towards SARS-CoV-2 Nsp10 and to reveal an inhibition in vitro against the ExoN activity. This approach first involved several docking studies, the subsequent syntheses of the best results obtained, the evaluation of affinity with Nsp10 by means of various biophysical assays (Near-native MS, SPR and MST) and finally the evaluation of their activity through phenotypic assays. The second approach consisted in the identification of new hits through the use of protein-templated synthesis (PTS). In particular, we focused on the kinetic target-guided synthesis (KTGS) strategy, in which the target protein is allowed to catalyze the irreversible synthesis of its own ligands from a pool of reagents (2). Through these two projects, we were able to obtain new compounds with higher affinity towards Nsp10 (84 – 305 µM by SPR) and with promising activity in a whole-cell setting assay (IC50 = 5 – 49 µM). The results obtained indicated that further development of the derivatives presented in this work may represent an opportunity to discover new SARS-CoV-2 antivirals with an unprecedented mode of action (3). Bibliography (1) Saramago, M. et al. New targets for drug design: importance of nsp14/nsp10 complex formation for the 3’‐5’ exoribonucleolytic activity on SARS‐CoV‐2. FEBS J 288, 5130–5147 (2021). (2) Bosc, D. et al. Kinetic Target-Guided Synthesis: Reaching the Age of Maturity. J. Med. Chem. 63, 3817–3833 (2020). (3) Jumde, R. P. et al. Target-directed dynamic combinatorial chemistry affords inhibitors of Nsp10 as potential antivirals against SARS-CoV-2 (2023).È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/16026