This thesis aims to investigate the pathophysiological role of the voltage-gated Kv1.3 potassium channel in microglia to comprehend its possible use as a therapeutic target to reduce neuroinflammation in neurodegenerative diseases. Specifically, the study conducted during my Erasmus Traineeship program at Monash University has taken into account amyotrophic lateral sclerosis or ALS, the most common type of motor neuron disease (MND). The research focused on two projects, conducted under the careful supervision of Associate Professor and Associate Dean Joseph A. Nicolazzo. Briefly, the first project took into consideration the demonstration of the up-regulation of the Kv1.3 channel in primary microglia isolated from the spinal cord of SOD1G93A mice, a mouse model of ALS, with the intention to use different Kv1.3 blocking peptides to reduce neuroinflammation and so the subsequent neurodegeneration, in ALS disease. At the same time, the murine-derived BV-2 microglia cell line was cultured and the MTT cell-viability, reactive oxygen species (ROS), and nitric oxide (NO) production assays were performed in order to assess the potential use of the blood brain barrier (BBB)-targeted Kv1.3 peptide blocker MTf-HsTX1[R14A], as well as the peptides OTD-000057-4, OTD-000367-4, MDT-001283-2 and MDT-001284-2, obtained through a collaboration with the Ben Towne Center for Childhood Cancer Research, Seattle, USA. In particular, the impact of these peptides on BV-2 release of ROS and NO following activation by lipopolysaccharide (LPS) 1 μg/mL was evaluated. Due to technical issues, it was not possible to reliably isolate microglia from SOD1G93A mice. However, the results of the functional studies were promising: all these BBB-targeted Kv1.3 blockers showed low or absent toxicity to microglia, as well as a substantial ability to reduce the levels of ROS and NO after the activation of the BV-2 cell line with LPS. Future directions for this study will involve confirming whether Kv1.3 expression is indeed increased in purified isolated microglia from WT and SOD1G93A mice, and a deeper understanding of the activity of these compounds both in primary microglia isolated from WT and SOD1G93A mice and in vivo ALS models. Such studies will therefore investigate the role of Kv1.3 in neuroinflammation and its blockade as a future approach to ameliorate the quality of life of ALS patients, as well as other neurodegenerative diseases.
L’obiettivo della presente tesi è quello di investigare il ruolo pato-fisiologico del canale del potassio voltaggio-dipendente Kv1.3 a livello delle cellule microgliali in modo da comprendere il suo possibile uso quale target terapeutico per ridurre la neuroinfiammazione nelle malattie neurodegenerative. In particolare, lo studio condotto durante il mio Erasmus Traineeship alla Monash University ha preso in considerazione la sclerosi laterale amiotrofica o ALS, la forma più comune della malattia dei moto neuroni (MND). La ricerca si è focalizzata su due progetti, entrambi condotti sotto l’attenta supervisione dell’Assoc. Prof. e Associate Dean Joseph Nicolazzo. In breve, il primo progetto ha preso in considerazione la dimostrazione della sovraespressione del canale Kv1.3 nelle microglia primarie isolate dal midollo spinale di topi SOD1G93A, un modello animale di ALS, con l’intenzione di usare diversi peptidi in grado di bloccare il canale Kv1.3 per ridurre la neuroinfiammazione e di conseguenza la neurodegenerazione nei soggetti affetti da ALS. Contemporaneamente, è stata coltivata la linea cellulare di microglia murine BV-2 e diversi saggi, come il saggio MTT per la valutazione della tossicità cellulare e i saggi per la valutazione della produzione delle specie reattive dell’ossigeno (ROS) e di ossido di azoto (NO) sono stati performati per determinare il potenziale uso di peptidi bloccanti il canale Kv1.3 aventi come target la barriera emato-encefalica, quali MTf-HsTX1[R14A] e i peptidi OTD-000057-4, OTD-000367-4, MDT-001283-2 e MDT-001284-2 ottenuti attraverso una collaborazione con il Ben Towne Center for Childhood Cancer Research, Seattle, USA. In particolare, è stato valutato l’impatto di questi peptidi sul rilascio di ROS e NO da parte delle cellule BV-2 in seguito alla loro attivazione tramite la somministrazione di 1 μg/mL di lipopolisaccaride (LPS). A causa di problemi tecnici, non è stato possibile isolare in maniera efficace le microglia primarie da topi wild-type o SOD1G93A . Nonostante questo, i risultati degli studi funzionali condotti sulle microglia murine BV-2 sono promettenti: tutti i peptidi bloccanti il canale del potassio Kv1.3, aventi come target la barriera emato-encefalica, hanno dimostrato bassa o assente tossicità cellulare, e al tempo stesso la capacità di ridurre significativamente i livelli di ROS e NO dopo l’attivazione della linea cellulare BV-2 con LPS. Direzioni future per questo studio involveranno la conferma dell’eventuale up-regolazione dell’espressione del canale Kv1.3 nelle microglia isolate da topi wild type e SOD1G93A, e una più profonda comprensione dell’attività di questi composti sia a livello di topi wild type e SOD1G93A che in modelli di ALS in vivo. Questi studi inoltre investigheranno il ruolo del canale Kv1.3 nella neuroinfiammazione, ed il suo blocco come futuro approccio per migliorare la qualità di vita di pazienti affetti da ALS, così come altre malattie neurodegenerative.
L’impatto dei peptidi bloccanti il canale del potassio Kv1.3 sull'infiammazione microgliale: potenziali applicazioni alla sclerosi laterale amiotrofica
DOGLIONE, UMBERTO
2022/2023
Abstract
This thesis aims to investigate the pathophysiological role of the voltage-gated Kv1.3 potassium channel in microglia to comprehend its possible use as a therapeutic target to reduce neuroinflammation in neurodegenerative diseases. Specifically, the study conducted during my Erasmus Traineeship program at Monash University has taken into account amyotrophic lateral sclerosis or ALS, the most common type of motor neuron disease (MND). The research focused on two projects, conducted under the careful supervision of Associate Professor and Associate Dean Joseph A. Nicolazzo. Briefly, the first project took into consideration the demonstration of the up-regulation of the Kv1.3 channel in primary microglia isolated from the spinal cord of SOD1G93A mice, a mouse model of ALS, with the intention to use different Kv1.3 blocking peptides to reduce neuroinflammation and so the subsequent neurodegeneration, in ALS disease. At the same time, the murine-derived BV-2 microglia cell line was cultured and the MTT cell-viability, reactive oxygen species (ROS), and nitric oxide (NO) production assays were performed in order to assess the potential use of the blood brain barrier (BBB)-targeted Kv1.3 peptide blocker MTf-HsTX1[R14A], as well as the peptides OTD-000057-4, OTD-000367-4, MDT-001283-2 and MDT-001284-2, obtained through a collaboration with the Ben Towne Center for Childhood Cancer Research, Seattle, USA. In particular, the impact of these peptides on BV-2 release of ROS and NO following activation by lipopolysaccharide (LPS) 1 μg/mL was evaluated. Due to technical issues, it was not possible to reliably isolate microglia from SOD1G93A mice. However, the results of the functional studies were promising: all these BBB-targeted Kv1.3 blockers showed low or absent toxicity to microglia, as well as a substantial ability to reduce the levels of ROS and NO after the activation of the BV-2 cell line with LPS. Future directions for this study will involve confirming whether Kv1.3 expression is indeed increased in purified isolated microglia from WT and SOD1G93A mice, and a deeper understanding of the activity of these compounds both in primary microglia isolated from WT and SOD1G93A mice and in vivo ALS models. Such studies will therefore investigate the role of Kv1.3 in neuroinflammation and its blockade as a future approach to ameliorate the quality of life of ALS patients, as well as other neurodegenerative diseases.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/16085