Maxwell-Stefan equations arose in order to give a description of diffusive phenomena involving gaseous mixtures, such as uphill and osmotic diffusion, which could not be explained by Fick’s constitutive law. Maxwell and Stefan first formulated a set of coupled partial differential equations which join the molar fractions and fluxes of chemical species composing the mixture. Moreover, they could be applied in several other engineering fields. The main aim of this thesis is a qualitative analysis of the homogenization of Maxwell-Stefan equations de- scribing a mixture of three chemical species in periodically perforated domains. In the end, we will propose a numerical visualization of the problem posed on a reference cell. As previously foretold, Fick’s law is not accurate to describe multi-species gaseous mixture due to fact that it does not take account of reciprocal interactions among chemical species. In [8] it is shown how to derive Maxwell-Stefan equations through the modeling of a gaseous mixture assuming the balance be- tween frictional and thermodynamical forces exerted on each chemical species. Once completed with the mass conservation law, we get the system object of our study. In particular we focus on the case of three chemical species with two equal diffusivities to riconduce to [4]. In this particular case, we may decouple the equations: the molar fraction of the first chemical species is the solution of the heat equation, while the second one satisfies a parabolic partial differential equation. The fluxes are instead found as functions of the molar fractions. Note that information about the third chemical species can be derived by the previous two due to the fact the the sum over molar fraction must be equal to one and the sum over the fluxes must be zero. The domain of interest is Ωε, a smooth bounded domain in R^N periodically punctured by holes of fixed radius ε which features a pattern consisting of periodically repeated miniatures of the reference cell Y* ⊂ Y := [0, 1]^N of sidelenght ε. We proceed investigating on the qualitative properties of the solutions of such problem. We achieve existence and uniqueness results drawing inspiration from the general theory of parabolic partial differential equations in [5]. Indeed, we take advantage of Galerkin approximations to find such solutions and then deducing for them some norm estimates, which would be crucial in the homogenization process. In particular we prove an uniform bound (independent by ε) for the H^1((0,T)×Ωε) norm of the molar fractions, whereT >0. Indeed, our aim is to find the asymptotical limit which the mole fractions tend when the diameter of the holes tends to 0 and the number of the holes tends to infinity keeping constant the volume of the total domain removed by the holes themselves. The technique we adopt is the multiscale convergence method and, in particular, (1,2)-convergence. Such convergence can be exploited in the homogenizations processes as showed in [9]. Taking as basis this article, we formulate an original result for the homogenization of the Maxwell- Stefan equations in the particular case of study described above. For each molar concentration, (1,2)-convergence concept is able to capture the micro- oscillations of the solutions of Maxwell-Stefan equations in the function limit for ε → 0. Moreover, we represent the homogenized equations satisfied by such limit functions. We then conclude the work presenting a numerical visualization of the problem posed over the cell of reference Y* taking advantage of Finite Element Method. The simulation reproduces a system similar to the one of the experiment led by Duncan and Toor in [8] and highlights the power of the Maxwell- Stefan equations in describing diffusion of multicomponent gaseous mixtures.
Le equazioni di Maxwell-Stefan nascono per dare una descrizione di fenomeni diffusivi che coinvolgono miscele gassose, come la diffusione uphill e osmotica, che non possono essere spiegate dalla legge costitutiva di Fick. Maxwell e Stefan formularono per la prima volta un insieme di equazioni differenziali alle derivate parziali accoppiate che uniscono le frazioni molari e i flussi delle specie chimiche che compongono la miscela. Inoltre, tali equazioni potrebbero essere applicate in molti altri campi dell'ingegneria. L'obiettivo principale di questa tesi è un'analisi qualitativa dell'omogeneizzazione delle equazioni di Maxwell-Stefan che descrivono una miscela di tre specie chimiche in domini periodicamente perforati. Alla fine, proporremo una visualizzazione numerica del problema posto su una cella di riferimento. Come preannunciato in precedenza, la legge di Fick non è accurata nel descrivere miscele gassosa multi-specie poiché non tiene conto delle reciproche interazioni tra specie chimiche. In [8] viene mostrato come derivare le equazioni di Maxwell-Stefan attraverso la modellizzazione di una miscela gassosa assumendo il bilanciamento tra forze di attrito e forze termodinamiche esercitate su ciascuna specie chimica. Una volta completato con la legge di conservazione di massa, otteniamo il sistema oggetto del nostro studio. In particolare ci concentriamo sul caso di tre specie chimiche con due uguali diffusività per ricondurci a [4]. In questo caso particolare, si possono disaccoppiare le equazioni: la frazione molare della prima specie chimica è la soluzione dell'equazione del calore, mentre la seconda soddisfa un'equazione differenziale alle derivate parziali parabolica. I flussi si trovano invece come funzioni delle frazioni molari. Si noti che le informazioni sulla terza specie chimica possono essere derivate dalle due precedenti perché la somma delle frazioni molari deve essere uguale a uno e la somma dei flussi è vincolata a essere zero. Il dominio di interesse è Ωε, un dominio delimitato liscio in R^N periodicamente perforato da fori di raggio fisso ε che presenta un pattern costituito da miniature periodicamente ripetute della cella di riferimento Y* sottoinsieme di Y := [0, 1]^N di lunghezza laterale ε. Procediamo a indagare le proprietà qualitative delle soluzioni di tale problema. I risultati di esistenza e unicità derivano dalla teoria generale delle equazioni differenziali alle derivate parziali paraboliche [5]. In effetti, approfittiamo delle approssimazioni di Galerkin per trovare tali soluzioni e quindi dedurre per loro alcune stime per la norma norma, che saranno cruciali nel processo di omogeneizzazione. In particolare dimostriamo un limite uniforme (indipendente da ε) per le norme in H^1((0,T) Ωε), dove T>0. Infatti, il nostro obiettivo è quello di trovare il limite asintotico a cui le frazioni molare tendono quando il diametro dei fori tende a 0 e il numero dei fori tende all'infinito mantenendo costante il volume del dominio totale rimosso da buchi stessi. Adottiamo la tecnica delle convergenza multiscala e, in particolare, (1,2)-convergenza. Tale convergenza può essere sfruttata nei processi di omogeneizzazione come mostrato in [9]. Prendendo come base questo articolo, formuliamo un risultato originale per l'omogeneizzazione delle equazioni di Maxwell-Stefan nel caso particolare di studio sopra descritto. Per ogni concentrazione molare, il concetto di convergenza (1,2) è in grado di catturare le micro-oscillazioni delle soluzioni delle equazioni di Maxwell-Stefan nella funzione limite per ε →0. Inoltre, rappresentiamo le equazioni omogeneizzate soddisfatte da tali funzioni limite. Concludiamo quindi il lavoro presentando una visualizzazione numerica del problema posto sulla cella di riferimento Y* sfruttando il Metodo degli Elementi Finiti. La simulazione riproduce un sistema simile a quello dell'esperimento condotto da Duncan e Toor in [8].
Homogenization of the Maxwell-Stefan equations in periodically perforated domains and a numerical visualization
NOCITA, CLAUDIA
2022/2023
Abstract
Maxwell-Stefan equations arose in order to give a description of diffusive phenomena involving gaseous mixtures, such as uphill and osmotic diffusion, which could not be explained by Fick’s constitutive law. Maxwell and Stefan first formulated a set of coupled partial differential equations which join the molar fractions and fluxes of chemical species composing the mixture. Moreover, they could be applied in several other engineering fields. The main aim of this thesis is a qualitative analysis of the homogenization of Maxwell-Stefan equations de- scribing a mixture of three chemical species in periodically perforated domains. In the end, we will propose a numerical visualization of the problem posed on a reference cell. As previously foretold, Fick’s law is not accurate to describe multi-species gaseous mixture due to fact that it does not take account of reciprocal interactions among chemical species. In [8] it is shown how to derive Maxwell-Stefan equations through the modeling of a gaseous mixture assuming the balance be- tween frictional and thermodynamical forces exerted on each chemical species. Once completed with the mass conservation law, we get the system object of our study. In particular we focus on the case of three chemical species with two equal diffusivities to riconduce to [4]. In this particular case, we may decouple the equations: the molar fraction of the first chemical species is the solution of the heat equation, while the second one satisfies a parabolic partial differential equation. The fluxes are instead found as functions of the molar fractions. Note that information about the third chemical species can be derived by the previous two due to the fact the the sum over molar fraction must be equal to one and the sum over the fluxes must be zero. The domain of interest is Ωε, a smooth bounded domain in R^N periodically punctured by holes of fixed radius ε which features a pattern consisting of periodically repeated miniatures of the reference cell Y* ⊂ Y := [0, 1]^N of sidelenght ε. We proceed investigating on the qualitative properties of the solutions of such problem. We achieve existence and uniqueness results drawing inspiration from the general theory of parabolic partial differential equations in [5]. Indeed, we take advantage of Galerkin approximations to find such solutions and then deducing for them some norm estimates, which would be crucial in the homogenization process. In particular we prove an uniform bound (independent by ε) for the H^1((0,T)×Ωε) norm of the molar fractions, whereT >0. Indeed, our aim is to find the asymptotical limit which the mole fractions tend when the diameter of the holes tends to 0 and the number of the holes tends to infinity keeping constant the volume of the total domain removed by the holes themselves. The technique we adopt is the multiscale convergence method and, in particular, (1,2)-convergence. Such convergence can be exploited in the homogenizations processes as showed in [9]. Taking as basis this article, we formulate an original result for the homogenization of the Maxwell- Stefan equations in the particular case of study described above. For each molar concentration, (1,2)-convergence concept is able to capture the micro- oscillations of the solutions of Maxwell-Stefan equations in the function limit for ε → 0. Moreover, we represent the homogenized equations satisfied by such limit functions. We then conclude the work presenting a numerical visualization of the problem posed over the cell of reference Y* taking advantage of Finite Element Method. The simulation reproduces a system similar to the one of the experiment led by Duncan and Toor in [8] and highlights the power of the Maxwell- Stefan equations in describing diffusion of multicomponent gaseous mixtures.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/16258