The main focus of my master thesis was the validation of zebrafish as a tool to study genetic diseases. In the first part of my research activity the zebrafish model for dominant OI Chihuahua (Chi/+) was exploited to investigate bone cells differentiation taking advantage of caudal fin regeneration. In the second part of my study antisense morpholinos were used to generate zebrafish models of ciliopathies as tools to investigate the effect of genetic variants in genes responsible for these diseases. Osteogenesis imperfecta (OI) is a group of rare heritable skeletal disorders caused by dominant mutations in the genes encoding collagen type I and recessive defects in proteins involved in collagen type I synthesis, processing, and osteoblast differentiation and activity. The OI bone phenotype is not only caused by abnormal collagen type I fibrils in the extracellular matrix, but also by altered bone cell homeostasis, as consequence of mutant collagen retention. Despite in vitro evidence, in vivo data on the effects of intracellular impairment on bone outcome are missing, thus, to better understand the physiopathology of OI, we used the zebrafish model Chihuahua (Chi/+) carrying a dominant p.G736D substitution in the collagen type I α1 chain. This mutation leads to a delay in collagen type I folding, causing over-modification and partial collagen type I intracellular retention. By taking advantages of the regeneration ability of zebrafish bony caudal fin. I investigated the impact of abnormal collagen synthesis on bone cell differentiation during the fin regeneration. A reduced caudal fin regeneration ability was observed in Chi/+ compared to WT as well as a delay in bone cells differentiation. Moreover, Chi/+ mutant caudal fins showed an increased numbers of adipocytes respect to controls, suggesting an osteoblastogenesis/adipogenesis switch, as already demonstrated in a murine OI model. Finally, reduced osteoclast number and impaired osteoclast activity were demonstrated in Chi/+ compared to WT, providing evidence of the negative impact of structurally abnormal collagen type I on bone formation. Ciliopathies are a group of autosomal (or X-linked) recessive disorders caused by mutations in proteins related to the primary cilium. These disorders primarily affect the central nervous system, retina, kidney, liver, and skeletal system and they exhibit extensive clinical heterogeneity, with patients often presenting overlapping phenotypes. The second part of my thesis was focused on the generation of zebrafish models of ciliopathies to be used in the future as tools to study the effect of specific Variant of Unknown Significance (VUS) identified in individuals affected by ciliopathy. Three genes with known effects on human patients were selected (ahi1, tmem67 and rpgrip1l) and specific antisense MOs were injected in fertilized zebrafish embryos. Morphants were characterized at 4 days post-fertilization based on the severity of phenotype depending on the downregulated gene and on the injected concentration. All the three MOs tested caused a severe impairment of embryos development with a different degree of variability. Impaired or lacking cilia formation was also observed by acetylated-tubuline immunofluorescence. These preliminary data confirmed the crucial role of ahi1, tmem67 and rpgrip1l for proper embryo development and cilia formation paving the way for the use of the model in VUS investigation studies.
L’obiettivo della mia tesi magistrale è stato quello di testare il modello zebrafish come valido strumento per lo studio delle malattie genetiche. Nella prima parte del mio tirocinio di tesi mi sono focalizzata sullo studio dei processi di differenziamento delle cellule dell’osso nel modello di osteogenesi dominante Chihuahua (Chi/+), sfruttando la capacità dello zebrafish di rigenerare la pinna caudale. Nella seconda parte della mia tesi, mi sono occupata della generazione di zebrafish knock down per geni implicati nello sviluppo di ciliopatie. L’ Osteogenesis Imperfecta (OI) è una malattia scheletrica ereditaria rara causata sia da mutazioni a trasmissione dominante nei geni che codificano le catene a del collagene di tipo I, sia da mutazioni a trasmissione recessiva in geni che codificano proteine implicate nei processi di sintesi, secrezione e fibrillogenesi del collagene di tipo I, nonché nel differenziamento e nell’attività degli osteoblasti. Dati in vivo inerenti ai processi di differenziamento delle cellule dell’osso sono ancora carenti. Per questo motivo durante il mio progetto di tesi è stato utilizzato il modello zebrafish di OI dominante Chihuahua (Chi/+) per meglio approfondire i meccanismi fisiopatologici della malattia. Il modello Chi/+ è caratterizzato da una mutazione (p.G736D) nella catena α1 del collagene di tipo I che causa la sintesi di collagene mutato, soggetto ad una over modificazione post traduzionale e quindi ritenuto all’interno del reticolo endoplasmatico. Sfruttando la capacità rigenerativa della pinna caudale dello zebrafish, una ridotta capacità di formazione ossea è stata riscontrata nei Chi/+ rispetto ai controlli (Wild type, WT), così come un ritardo nel differenziamento degli osteoblasti. Inoltre, un’alterazione del processo di differenziamento delle cellule mesenchimali, risultante in un aumento degli adipociti rispetto agli osteoblasti, è stato osservato nei Chi/+ rispetto ai wt.. Nella seconda parte del mio progetto di tesi mi sono occupata dello studio delle ciliopatie, un gruppo di patologie ereditarie recessive causate da mutazioni in proteine responsabili del corretto funzionamento del ciglio primario. I principali disturbi generati da queste malattie riguardano principalmente il sistema nervoso centrale, la retina, i reni, il fegato e il sistema scheletrico e mostrano un'ampia eterogeneità clinica, con pazienti che spesso manifestano fenotipi sovrapposti. Mi sono quindi occupata della generazione di modelli di ciliopatie al fine di valutare l’effetto fenotipico di questi difetti genetici sfruttando il modello zebrafish. Oligonucleotidi antisenso, noti come morfolino, in grado di targettare i geni selezionati per lo studio (ahi1, tmem67 e rpgrip1l ) sono stati iniettati in embrioni di zebrafish al fine di silenziare il trascritto di interesse. I morfanti ottenuti sono stati caratterizzati allo stadio di 4 giorni dopo la fecondazione valutando diversi gradi di severità del fenotipo. Gravi malformazioni e alti tassi di mortalità durante lo sviluppo embrionale sono stati evidenziati per tutti e 3 i mutanti generati. Mediante esperimenti di immunofluorescenza, utilizzando un anticorpo contro la tubulina acetilata, è stato dimostrato come il knock down dei geni ahi1 e rpgrip1l abbia severamente compromesso lo sviluppo delle ciglia presenti nel placode olfattivo dei morfanti. In questi due modelli, infatti, non è stata rilevata la presenza di tubulina acetilata, ad indicare la totale assenza di ciglia. Nel morfanti tmem67 invece poche e disorganizzate ciglia erano visibili. Questi dati indicano livelli di severità diversa a seconda del gene silenziato. Lo zebrafish può quindi essere considerato un valido modello per lo studiare degli effetti dei singoli geni sull’insorgenza e la gravità delle ciliopatie, al fine di sviluppare nuove terapie ed approcci per la cura di queste patologie.
Zebrafish as a tool for genetic diseases
GIUSTO, ALICE
2022/2023
Abstract
The main focus of my master thesis was the validation of zebrafish as a tool to study genetic diseases. In the first part of my research activity the zebrafish model for dominant OI Chihuahua (Chi/+) was exploited to investigate bone cells differentiation taking advantage of caudal fin regeneration. In the second part of my study antisense morpholinos were used to generate zebrafish models of ciliopathies as tools to investigate the effect of genetic variants in genes responsible for these diseases. Osteogenesis imperfecta (OI) is a group of rare heritable skeletal disorders caused by dominant mutations in the genes encoding collagen type I and recessive defects in proteins involved in collagen type I synthesis, processing, and osteoblast differentiation and activity. The OI bone phenotype is not only caused by abnormal collagen type I fibrils in the extracellular matrix, but also by altered bone cell homeostasis, as consequence of mutant collagen retention. Despite in vitro evidence, in vivo data on the effects of intracellular impairment on bone outcome are missing, thus, to better understand the physiopathology of OI, we used the zebrafish model Chihuahua (Chi/+) carrying a dominant p.G736D substitution in the collagen type I α1 chain. This mutation leads to a delay in collagen type I folding, causing over-modification and partial collagen type I intracellular retention. By taking advantages of the regeneration ability of zebrafish bony caudal fin. I investigated the impact of abnormal collagen synthesis on bone cell differentiation during the fin regeneration. A reduced caudal fin regeneration ability was observed in Chi/+ compared to WT as well as a delay in bone cells differentiation. Moreover, Chi/+ mutant caudal fins showed an increased numbers of adipocytes respect to controls, suggesting an osteoblastogenesis/adipogenesis switch, as already demonstrated in a murine OI model. Finally, reduced osteoclast number and impaired osteoclast activity were demonstrated in Chi/+ compared to WT, providing evidence of the negative impact of structurally abnormal collagen type I on bone formation. Ciliopathies are a group of autosomal (or X-linked) recessive disorders caused by mutations in proteins related to the primary cilium. These disorders primarily affect the central nervous system, retina, kidney, liver, and skeletal system and they exhibit extensive clinical heterogeneity, with patients often presenting overlapping phenotypes. The second part of my thesis was focused on the generation of zebrafish models of ciliopathies to be used in the future as tools to study the effect of specific Variant of Unknown Significance (VUS) identified in individuals affected by ciliopathy. Three genes with known effects on human patients were selected (ahi1, tmem67 and rpgrip1l) and specific antisense MOs were injected in fertilized zebrafish embryos. Morphants were characterized at 4 days post-fertilization based on the severity of phenotype depending on the downregulated gene and on the injected concentration. All the three MOs tested caused a severe impairment of embryos development with a different degree of variability. Impaired or lacking cilia formation was also observed by acetylated-tubuline immunofluorescence. These preliminary data confirmed the crucial role of ahi1, tmem67 and rpgrip1l for proper embryo development and cilia formation paving the way for the use of the model in VUS investigation studies.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/16397