Surgery of the esophagus is accompanied by a series of complications related to the characteristics of the organ, its anatomical location and the type of procedure that is necessary to run depending on the condition to be treated. There are many esophageal conditions of surgical relevance including both congenital malformations such as atresias and acquired conditions such as carcinomas. These illnesses often require an esophagectomy that results in resection of the entire thickness of the organ that is replaced using another organ, most commonly the stomach but occasionally the small or large intestine. This strategy involves surgery on multiple anatomical sites causing major postoperative complications such as leakage of the injury or stenosis of the conduct. Because of these issues many recent studies have been developed with the purpose to bypass the limitations related to the surgical procedures currently in use; new possible therapeutic approaches are based on Regenerative Medicine by transplantation of engineered tissues. During my thesis, I was involved in the project RC- 2021-n.986-rcr2021i-24 “3D-hybrid engineered tubular bioscaffold for esophageal tissue regeneration: from in vitro to in vivo validation” supported by the Italian Ministry of Health. This study wants to explore new combinations of biodegradable and biocompatible tubular scaffolds obtained through the combination of 3D printing and electrospinning manufacturing techniques, in order to obtain a functional scaffold able to sustain the regeneration of esophageal tissue. The main focus of this study is to obtain an hybrid bioscaffolds of Polylactide-co-poly-caprolactone with superior mechanical and biological properties combining 3D-printed and Electrospun scaffolds, and to define the best 3D printing parameters and set-up in order to faithfully reproduce physiological esophageal mechanical properties. Other hypothesis includes creating a tailor-made scaffold based on CT scans and to load the hybrid scaffold with anti-inflammatory and antibiotic drugs to reduce infections and inflammation on the interested area. All the scaffolds after appropriate characterization in vitro and ex vivo will be tested in vivo on porcine model with the aim of assessing tissue regeneration, biocompatibility and any postoperative complications.
La chirurgia dell'esofago è accompagnata da una serie di complicazioni legate alle caratteristiche dell'organo, alla sua localizzazione anatomica e al tipo di procedura che è necessario eseguire a seconda della condizione da trattare. Esistono molte condizioni esofagee di rilevanza chirurgica, tra cui sia malformazioni congenite come le atresie sia condizioni acquisite come i carcinomi. Queste patologie richiedono spesso un'esofagectomia che comporta la resezione dell'intero spessore dell'organo che viene sostituito con un altro organo, più comunemente lo stomaco ma occasionalmente l'intestino tenue o crasso. Questa strategia comporta l'intervento su più siti anatomici, causando importanti complicazioni postoperatorie come la fuoriuscita della lesione o la stenosi della condotta. A causa di questi problemi, molti studi recenti sono stati sviluppati con lo scopo di aggirare le limitazioni legate alle procedure chirurgiche attualmente in uso; nuovi possibili approcci terapeutici si basano sulla Medicina Rigenerativa attraverso il trapianto di tessuti ingegnerizzati.Durante la mia tesi di laurea, sono stata coinvolta nel progetto RC- 2021-n.986-rcr2021i-24 "3D-hybrid engineered tubular bioscaffold for esophageal tissue regeneration: from in vitro to in vivo validation" sostenuto dal Ministero della Salute italiano. Questo studio vuole esplorare nuove combinazioni di scaffold tubolari biodegradabili e biocompatibili ottenuti attraverso la combinazione di tecniche di produzione di stampa 3D ed elettrofilatura, al fine di ottenere uno scaffold funzionale in grado di sostenere la rigenerazione del tessuto esofageo. L'obiettivo principale di questo studio è quello di ottenere un bioscaffold ibrido di polilattide-co-poli-caprolattone con proprietà meccaniche e biologiche superiori, combinando scaffold stampati in 3D e scaffold elettrofilati, e di definire i migliori parametri e set-up di stampa 3D per riprodurre fedelmente le proprietà meccaniche fisiologiche dell'esofago. Altre ipotesi includono la creazione di un'impalcatura su misura basata su scansioni TC e il caricamento dell'impalcatura ibrida con farmaci antinfiammatori e antibiotici per ridurre le infezioni e l'infiammazione nell'area interessata. Tutti gli scaffold, dopo un'adeguata caratterizzazione in vitro ed ex vivo, saranno testati in vivo su modello suino con l'obiettivo di valutare la rigenerazione dei tessuti, la biocompatibilità e le eventuali complicazioni post-operatorie.
SCAFFOLDS BIOSINTETICI PER LA RICOSTRUZIONE DI DIFETTI DELL'ESOFAGO NEL MODELLO SUINO: STUDIO PRELIMINARE
NOBILI, AURORA
2022/2023
Abstract
Surgery of the esophagus is accompanied by a series of complications related to the characteristics of the organ, its anatomical location and the type of procedure that is necessary to run depending on the condition to be treated. There are many esophageal conditions of surgical relevance including both congenital malformations such as atresias and acquired conditions such as carcinomas. These illnesses often require an esophagectomy that results in resection of the entire thickness of the organ that is replaced using another organ, most commonly the stomach but occasionally the small or large intestine. This strategy involves surgery on multiple anatomical sites causing major postoperative complications such as leakage of the injury or stenosis of the conduct. Because of these issues many recent studies have been developed with the purpose to bypass the limitations related to the surgical procedures currently in use; new possible therapeutic approaches are based on Regenerative Medicine by transplantation of engineered tissues. During my thesis, I was involved in the project RC- 2021-n.986-rcr2021i-24 “3D-hybrid engineered tubular bioscaffold for esophageal tissue regeneration: from in vitro to in vivo validation” supported by the Italian Ministry of Health. This study wants to explore new combinations of biodegradable and biocompatible tubular scaffolds obtained through the combination of 3D printing and electrospinning manufacturing techniques, in order to obtain a functional scaffold able to sustain the regeneration of esophageal tissue. The main focus of this study is to obtain an hybrid bioscaffolds of Polylactide-co-poly-caprolactone with superior mechanical and biological properties combining 3D-printed and Electrospun scaffolds, and to define the best 3D printing parameters and set-up in order to faithfully reproduce physiological esophageal mechanical properties. Other hypothesis includes creating a tailor-made scaffold based on CT scans and to load the hybrid scaffold with anti-inflammatory and antibiotic drugs to reduce infections and inflammation on the interested area. All the scaffolds after appropriate characterization in vitro and ex vivo will be tested in vivo on porcine model with the aim of assessing tissue regeneration, biocompatibility and any postoperative complications.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/16421