This thesis presents a combined research and experimental study investigating the integration of collaborative robots (cobots) as transformative solutions within complex industrial operations. As industries continue to evolve to meet modern demands, the symbiotic relationship between human workers and automation technologies becomes increasingly crucial. Traditional industrial robots have proven effective in repetitive and standardized tasks. In contrast, cobots, a subset of robotics, offer the potential for close human-robot collaboration while ensuring safety and productivity. In collaboration with Rehouseit, an innovative industrial line was designed, incorporating the utilization of a Cobot (Universal Robot 10e) for multi-axis milling of 3D printed objects. The journey commenced by selecting appropriate machining materials and devising an optimal software and hardware setup for seamless operation. However, the kinematic constraints of the cobot hindered multi-axis machining and gave rise to errors. To address this, a custom software solution was developed using Javascript, inspired by reference to other competitive industrial robots. This solution, also known as a Post Processor, converts Computer-Aided Manufacturing (CAM) outputs into specific codes that the robot can use as tool paths. While the software enabled multi-axis machining, generating error-free tool paths for intricate profiles remained a challenge. In a practical experiment, a complex profile was designed in Fusion360 to explore multi-axis machining. Drawing inspiration from the CORAIL table, a 3D-printed customizable concrete base, dimensions of the complex profiles were systematically altered. Collected experimental data informed subsequent customization of the software to generate error-free tool paths, accounting for the robot's kinematic constraints and the working environment. To facilitate real-time testing, Python scripts were employed to simulate generated tool paths. This customized software was rigorously tested on actual industrial projects, resulting in seamless operation without errors. This research provides invaluable insights for industries seeking innovative solutions that align with the evolving landscape of modern industrial operations using cobots. In conclusion, the thesis contributes to the ongoing discourse on cobots' role in industrial automation, underscoring their potential to revolutionize their field of application.
Automazione di una Linea Industriale Innovativa basata su Robot Collaborativi. Questa tesi presenta uno studio combinato di ricerca e sperimentale che indaga l'integrazione di robot collaborativi (cobots) come soluzioni trasformative all'interno di operazioni industriali complesse. Man mano che le industrie continuano ad evolversi per soddisfare le richieste moderne, il rapporto simbiotico tra i lavoratori umani e le tecnologie di automazione diventa sempre più cruciale. I robot industriali tradizionali si sono dimostrati efficaci in compiti ripetitivi e standardizzati. Invece, i cobots, un sottinsieme della robotica, offrono il potenziale per una stretta collaborazione uomo-robot garantendo al contempo sicurezza e produttività. In collaborazione con Rehouseit, è stata progettata una linea industriale innovativa che incorpora l'utilizzo di un Cobot (Universal Robot 10e) per la fresatura multi-asse di oggetti stampati in 3D. Il percorso è iniziato selezionando materiali di lavorazione appropriati e ideando una configurazione software e hardware ottimale per un funzionamento senza interruzioni. Tuttavia, i vincoli cinematici del cobot hanno ostacolato la fresatura multi-asse e hanno causato errori. Per risolvere questo problema, è stata sviluppata una soluzione software personalizzata usando Javascript, ispirata ad altri robot industriali competitivi. Questa soluzione, conosciuta anche come Post Processor, converte gli output della Computer-Aided Manufacturing (CAM) in codici specifici che il robot può usare come percorsi utensili. Mentre il software ha permesso la fresatura multi-asse, generare percorsi utensili senza errori per profili intricati è rimasto una sfida. In un esperimento pratico, un profilo complesso è stato progettato in Fusion360 per esplorare la fresatura multi-asse. Traendo ispirazione dal tavolo CORAIL, una base in calcestruzzo stampabile in 3D e personalizzabile, le dimensioni dei profili complessi sono state modificate sistematicamente. I dati sperimentali raccolti hanno informato la successiva personalizzazione del software per generare percorsi utensili senza errori, tenendo conto dei vincoli cinematici del robot e dell'ambiente di lavoro. Per facilitare i test in tempo reale, sono stati impiegati script Python per simulare i percorsi utensili generati. Questo software personalizzato è stato rigorosamente testato su progetti industriali reali, risultando in un funzionamento senza errori. Questa ricerca fornisce intuizioni preziose per le industrie che cercano soluzioni innovative che si allineano con il panorama in evoluzione delle operazioni industriali moderne usando cobots. In conclusione, la tesi contribuisce al discorso in corso sul ruolo dei cobots nell'automazione industriale, sottolineando il loro potenziale per rivoluzionare il loro campo di applicazione.
Automation of an Innovative Industrial lIne based on Collaborative Robots
ROUTHU, THOMAS
2022/2023
Abstract
This thesis presents a combined research and experimental study investigating the integration of collaborative robots (cobots) as transformative solutions within complex industrial operations. As industries continue to evolve to meet modern demands, the symbiotic relationship between human workers and automation technologies becomes increasingly crucial. Traditional industrial robots have proven effective in repetitive and standardized tasks. In contrast, cobots, a subset of robotics, offer the potential for close human-robot collaboration while ensuring safety and productivity. In collaboration with Rehouseit, an innovative industrial line was designed, incorporating the utilization of a Cobot (Universal Robot 10e) for multi-axis milling of 3D printed objects. The journey commenced by selecting appropriate machining materials and devising an optimal software and hardware setup for seamless operation. However, the kinematic constraints of the cobot hindered multi-axis machining and gave rise to errors. To address this, a custom software solution was developed using Javascript, inspired by reference to other competitive industrial robots. This solution, also known as a Post Processor, converts Computer-Aided Manufacturing (CAM) outputs into specific codes that the robot can use as tool paths. While the software enabled multi-axis machining, generating error-free tool paths for intricate profiles remained a challenge. In a practical experiment, a complex profile was designed in Fusion360 to explore multi-axis machining. Drawing inspiration from the CORAIL table, a 3D-printed customizable concrete base, dimensions of the complex profiles were systematically altered. Collected experimental data informed subsequent customization of the software to generate error-free tool paths, accounting for the robot's kinematic constraints and the working environment. To facilitate real-time testing, Python scripts were employed to simulate generated tool paths. This customized software was rigorously tested on actual industrial projects, resulting in seamless operation without errors. This research provides invaluable insights for industries seeking innovative solutions that align with the evolving landscape of modern industrial operations using cobots. In conclusion, the thesis contributes to the ongoing discourse on cobots' role in industrial automation, underscoring their potential to revolutionize their field of application.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/16648