Osteosarcoma is the most common primary malignant neoplasm of bone most frequently affecting children and adolescents. Although the combination of surgery and chemotherapy has improved the outcomes of patients with osteosarcoma, the survival rate still remains very low due to the high propensity of tumor cells for local invasion and metastasis. A new treatment option is Boron Neutron Capture Therapy (BNCT), an experimental binary radiotherapy that is providing promising results. This technique involves irradiation with epithermal neutrons of neoplastic cells previously enriched with a stable isotope of nonradioactive boron (10B), resulting in the release of two ionized particles (α, 7Li), which disperse their energy over a distance comparable with the diameter of the tumor cell, causing irreversible DNA damage and allowing the selective destruction of the tumor tissue while leaving the surrounding healthy tissue intact. This paper focuses on the creation of three-dimensional osteosarcoma tumor models produced by 3D bioprinting, with the ultimate goal of using them for studies inherent to BNCT. 3D bioprinting is a technology that allows a biomaterial (bioink) to be deposited layer-on-layer according to a predefined architecture using a 3D printer, enabling the fabrication of 3D cellular microstructures that best mimic the complexity of the tumor microenvironment and responses to drug treatments, surpassing 2D cell cultures and animal models, in accordance with the 3Rs principle. The 3D "Cellink INKREDIBLE+®" pneumatic extrusion bioprinter was used in this project to print two different bioinks: one composed of sodium alginate and gelatin, the other of sodium alginate and collagen, mixed with cells from the rat osteosarcoma cell line (UMR-106). The key point was to assess whether the cells encapsulated in the 3D models we made were able to pick up 10B, paying attention to the fact that the biomaterials that make up the construct could interfere with the measurement. The technique currently used for this type of analysis is Neutron Autoradiography, which is required to assess the concentration and intracellular biodistribution of boron in 2D samples. To obtain 3D models of osteosarcoma suitable for BNCT application, in vitro 3D model development was optimized by improving the printing protocol, biomaterial selection, cell density, and crosslinking process. Subsequently, the generated constructs were subjected to Neutron Autoradiography to evaluate the interference of the gel with boron uptake and its quantification. The analyses performed provided encouraging results for the achievement of the project's purpose.
L’osteosarcoma è la neoplasia maligna primaria più comune dell’osso che colpisce più frequentemente bambini e adolescenti. Sebbene la combinazione di chirurgia e chemioterapia abbia migliorato gli esiti dei pazienti con osteosarcoma, il tasso di sopravvivenza rimane ancora molto basso, a causa dell’elevata propensione delle cellule tumorali all’invasione locale e alla metastasi. Una nuova possibilità di cura è data dalla Terapia per Cattura Neutronica del Boro (BNCT), una radioterapia binaria sperimentale che sta fornendo risultati promettenti. Tale tecnica prevede l’irraggiamento con neutroni epitermici delle cellule neoplastiche precedentemente arricchite con un isotopo stabile del boro non radioattivo (10B), con conseguente rilascio di due particelle ionizzate (α, 7Li), le quali disperdono la loro energia in una distanza comparabile con il diametro della cellula tumorale, causando un danno irreversibile al DNA e permettendo di distruggere selettivamente il tessuto tumorale lasciando intatto il tessuto sano circostante. Il presente elaborato si concentra sulla creazione di modelli tumorali tridimensionali di osteosarcoma prodotti tramite 3D bioprinting, con lo scopo finale di utilizzarli per studi inerenti la BNCT. Il 3D bioprinting è una tecnologia che permette, tramite una stampante 3D, di depositare un biomateriale (bioink) strato su strato secondo un'architettura predefinita, consentendo la fabbricazione di microstrutture cellulari 3D che riproducono al meglio la complessità del microambiente tumorale e le risposte ai trattamenti farmacologici, superando le colture cellulari 2D e i modelli animali, nel rispetto del principio delle 3R. La biostampante 3D “Cellink INKREDIBLE+®” ad estrusione pneumatica è stata utilizzata in questo progetto per stampare due diversi bioink: uno composto da alginato di sodio e gelatina, l’altro da alginato di sodio e collagene, miscelati con cellule della linea cellulare di osteosarcoma di ratto (UMR-106). Punto fondamentale è stato quello di valutare se le cellule incapsulate nei modelli 3D da noi realizzati fossero in grado di captare il 10B, prestando attenzione al fatto che i biomateriali che costituiscono il costrutto potrebbero interferire con la misurazione. La tecnica attualmente utilizzata per questo tipo di analisi è l'Autoradiografia Neutronica, necessaria per valutare la concentrazione e la biodistribuzione intracellulare del boro in campioni 2D. Per ottenere modelli 3D di osteosarcoma idonei all’applicazione della BNCT è stato ottimizzato lo sviluppo del modello tridimensionale in vitro, migliorando il protocollo di stampa, la selezione del biomateriale, la densità cellulare e il processo di reticolazione. In seguito, i costrutti realizzati sono stati sottoposti ad Autoradiografia Neutronica per valutare l’interferenza del gel con l’uptake del boro e con la sua quantificazione. Le analisi svolte hanno fornito risultati incoraggianti per il raggiungimento dello scopo del progetto.
Ottimizzazione della metodica per la realizzazione di costrutti di osteosarcoma mediante 3D bioprinting: un modello alternativo per studi sperimentali inerenti la Terapia per Cattura Neutronica del Boro (BNCT).
SAMBATI, ELEONORA
2022/2023
Abstract
Osteosarcoma is the most common primary malignant neoplasm of bone most frequently affecting children and adolescents. Although the combination of surgery and chemotherapy has improved the outcomes of patients with osteosarcoma, the survival rate still remains very low due to the high propensity of tumor cells for local invasion and metastasis. A new treatment option is Boron Neutron Capture Therapy (BNCT), an experimental binary radiotherapy that is providing promising results. This technique involves irradiation with epithermal neutrons of neoplastic cells previously enriched with a stable isotope of nonradioactive boron (10B), resulting in the release of two ionized particles (α, 7Li), which disperse their energy over a distance comparable with the diameter of the tumor cell, causing irreversible DNA damage and allowing the selective destruction of the tumor tissue while leaving the surrounding healthy tissue intact. This paper focuses on the creation of three-dimensional osteosarcoma tumor models produced by 3D bioprinting, with the ultimate goal of using them for studies inherent to BNCT. 3D bioprinting is a technology that allows a biomaterial (bioink) to be deposited layer-on-layer according to a predefined architecture using a 3D printer, enabling the fabrication of 3D cellular microstructures that best mimic the complexity of the tumor microenvironment and responses to drug treatments, surpassing 2D cell cultures and animal models, in accordance with the 3Rs principle. The 3D "Cellink INKREDIBLE+®" pneumatic extrusion bioprinter was used in this project to print two different bioinks: one composed of sodium alginate and gelatin, the other of sodium alginate and collagen, mixed with cells from the rat osteosarcoma cell line (UMR-106). The key point was to assess whether the cells encapsulated in the 3D models we made were able to pick up 10B, paying attention to the fact that the biomaterials that make up the construct could interfere with the measurement. The technique currently used for this type of analysis is Neutron Autoradiography, which is required to assess the concentration and intracellular biodistribution of boron in 2D samples. To obtain 3D models of osteosarcoma suitable for BNCT application, in vitro 3D model development was optimized by improving the printing protocol, biomaterial selection, cell density, and crosslinking process. Subsequently, the generated constructs were subjected to Neutron Autoradiography to evaluate the interference of the gel with boron uptake and its quantification. The analyses performed provided encouraging results for the achievement of the project's purpose.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/16969