Deep chronic wounds are alterations of the epithelial integrity of skin, that is often worsened by underlying diseases. The healing process is therefore blocked, resulting in impaired tissue regeneration. Tissue engineering (TE) is an interdisciplinary subject that aims at the design and development of implants which could repair and restore the functions of damaged tissues. Three-dimensional matrices, named scaffolds, are the key element of TE, since they can mimic the architecture of the extracellular matrix and promote cell adhesion, proliferation and differentiation. In order to improve the regenerative properties of scaffolds, bioactive materials can be included. Clay minerals arouse a lot of interest due to their chemical composition and structure, their biocompatibility, low toxicity, high loading capacity of ionic or polar molecules and pH-dependent degradation. Therefore, the aim of this thesis was the design and development of polymeric microparticles using the spray drying technique. These are based on two biocompatible and biodegradable polysaccharides: sodium alginate and chondroitin sulphate. Microparticles were doped with layered double hydroxides (LDH), which are synthetic anionic clays, to further promote the restoration of the tissue integrity in chronic skin wounds. The chosen LDH contain Zn2+ and Al2+ as structural cations. The presence of Zn2+ could enhance the skin healing process thanks to its well-known regenerative and antibacterial properties.In order to improve their stability in physiological environment, microparticles were cross-linked using calcium chloride. The obtained microparticles have a spheroidal morphology with an average hydrodynamic diameter between 10 and 17 μm. The incorporation of LDH is confirmed by the presence of hexagonal lamellar portions, typical of the structure of this clay. The results suggest a slow degradation of the scaffold, from which it was possible to observe a release of zinc, as a functional element in the regeneration process, up to about 30%. In vitro studies on Normal Human Dermal Fibroblasts confirmed the biocompatibility of scaffolds and their ability to stimulate cell proliferation for up to 6 days. Finally, the efficacy of the scaffolds has been studied in vivo: the murine model supported the positive effect in promoting wound healing. Therefore, these scaffolds are promising for use in the treatment of deep chronic wounds.
Le ferite croniche profonde sono alterazioni dell’integrità epiteliale della cute, spesso causate da un processo patologico sottostante, la cui completa guarigione è impedita. L’ ingegneria tissutale è una materia interdisciplinare che ha l’obiettivo di progettare e sviluppare degli impianti in grado di rigenerare i tessuti danneggiati e ripristinarne le funzioni. A questo scopo vengono utilizzate delle matrici tridimensionali, comunemente chiamate scaffold, le quali mimano l’architettura della matrice extracellulare e favoriscono l’adesione, la proliferazione e la differenziazione cellulare. Al fine di migliorare le proprietà rigenerative degli scaffold, è possibile includere dei materiali bioattivi. Tra questi, i minerali argillosi suscitano molto interesse per la loro struttura e composizione chimica, per la biocompatibilità, bassa tossicità, elevata capacità di caricamento di molecole ioniche o polari e degradazione pH-dipendente. Pertanto, l'obiettivo di questo lavoro di tesi è la progettazione e lo sviluppo, mediante la tecnica dello spray drying, di microparticelle polimeriche a base di due polisaccaridi biocompatibili e biodegradabili, alginato di sodio e condroitin solfato. Le microparticelle sono state poi caricate con layered double hydroxides (LDH), argille anioniche di origine sintetica, per ripristinare l'integrità dei tessuti nelle ferite croniche cutanee. Gli LDH selezionati contengono nella loro struttura Zn2+ e Al2+ come cationi. La presenza dello Zn2+ potrebbe essere funzionale al processo di guarigione delle ferite grazie alle sue ben note proprietà rigenerative e antibatteriche. Infine, per migliorare la stabilità in ambiente fisiologico, le microparticelle sono state reticolate tramite l’utilizzo di calcio cloruro. Le microparticelle ottenute presentano una morfologia prevalentemente sferoidale e un diametro idrodinamico medio compreso tra 10 e 17 µm. L’incorporazione di LDH è confermata dalla presenza di porzioni lamellari esagonali, tipiche della struttura di questa argilla. I risultati suggeriscono una lenta degradazione del materiale, da cui è stato possibile osservare un rilascio di zinco, quale elemento funzionale al processo di rigenerazione, fino a circa il 30%. Studi in vitro su Fibroblasti Normali Umani del Derma hanno rivelato la biocompatibilità degli scaffold e la loro capacità di stimolare la proliferazione cellulare fino a 6 giorni. Infine, l’efficacia degli scaffold è stata studiata in vivo: il modello murino sembra supportare l’effetto positivo nel promuovere la guarigione delle ferite. Pertanto, questi scaffold sono promettenti per l’utilizzo nel trattamento delle ferite croniche profonde.
Progettazione e sviluppo di scaffold contenenti argille sintetiche per la rigenerazione tissutale cutanea.
COLLEDANCHISE, CHIARA
2022/2023
Abstract
Deep chronic wounds are alterations of the epithelial integrity of skin, that is often worsened by underlying diseases. The healing process is therefore blocked, resulting in impaired tissue regeneration. Tissue engineering (TE) is an interdisciplinary subject that aims at the design and development of implants which could repair and restore the functions of damaged tissues. Three-dimensional matrices, named scaffolds, are the key element of TE, since they can mimic the architecture of the extracellular matrix and promote cell adhesion, proliferation and differentiation. In order to improve the regenerative properties of scaffolds, bioactive materials can be included. Clay minerals arouse a lot of interest due to their chemical composition and structure, their biocompatibility, low toxicity, high loading capacity of ionic or polar molecules and pH-dependent degradation. Therefore, the aim of this thesis was the design and development of polymeric microparticles using the spray drying technique. These are based on two biocompatible and biodegradable polysaccharides: sodium alginate and chondroitin sulphate. Microparticles were doped with layered double hydroxides (LDH), which are synthetic anionic clays, to further promote the restoration of the tissue integrity in chronic skin wounds. The chosen LDH contain Zn2+ and Al2+ as structural cations. The presence of Zn2+ could enhance the skin healing process thanks to its well-known regenerative and antibacterial properties.In order to improve their stability in physiological environment, microparticles were cross-linked using calcium chloride. The obtained microparticles have a spheroidal morphology with an average hydrodynamic diameter between 10 and 17 μm. The incorporation of LDH is confirmed by the presence of hexagonal lamellar portions, typical of the structure of this clay. The results suggest a slow degradation of the scaffold, from which it was possible to observe a release of zinc, as a functional element in the regeneration process, up to about 30%. In vitro studies on Normal Human Dermal Fibroblasts confirmed the biocompatibility of scaffolds and their ability to stimulate cell proliferation for up to 6 days. Finally, the efficacy of the scaffolds has been studied in vivo: the murine model supported the positive effect in promoting wound healing. Therefore, these scaffolds are promising for use in the treatment of deep chronic wounds.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/17068