In recent years, sodium magnetic resonance imaging (MRI) has become increasingly popular thanks to technological progress, which has allowed greater availability of high magnetic field scanners and thanks to improvements in acquisition methodologies. This thesis focuses on the study of rapid imaging using and optimizing the Seiffert spiral sequence for sodium imaging, providing an in-depth analysis, both on a theoretical and practical level, of its actual effectiveness. The proposed study began by simulating the sequence using MATLAB code, paying particular attention to the reconstruction of the image through the innovative coverage of the k space promoted by the sequence itself. This phase provided a solid basis for understanding its operation and selecting the optimal combination of parameters. The selection was made so that the reconstructed image, from the trajectory, had a high signal-to-noise ratio (SNR) and a small full width at half maximum (FWHM) of the point spread function (PSF). Subsequently, the investigation was extended to the practical phase, with the application of the optimized Seiffert sequence to acquire, using a Philips 3T scanner, images of phantoms containing known concentrations of sodium. This experimental phase was fundamental to test the sequence in controlled conditions and to understand its behaviour in real situations. The investigation involved the calculation of the SNR, the calculation of the FWHM of the intensity of the signal produced by the ghosts and the comparison of the results obtained with those of the simulations. Once the coherence was validated, the analysis continued with the determination of the total sodium concentration present in the phantoms. The last step of the project involved the application of the appropriately configured sequence to acquire sodium images from the brains of two volunteers thanks to the Philips 3T scanner. To further evaluate and validate the sequence employed, the SNR and TSC of particular brain areas were calculated. The SNR values were subsequently compared with the results obtained from the experimental phase with the phantoms, confirming the effectiveness of the sequence used. This final phase allowed us to obtain tangible feedback on the application of the approach on real data, thus projecting the Seiffert spiral sequence in view of its potential use in medical research. The integration of theoretical simulations, phantom experiments and real in vivo data analyses helped to provide a comprehensive overview of the validity and effectiveness of this innovative sodium imaging methodology.
Negli ultimi anni, la risonanza magnetica per immagini (MRI) del sodio è diventata sempre più popolare grazie al progresso tecnologico, che ha consentito una maggiore disponibilità di scanner ad alto campo magnetico e grazie al miglioramento delle metodologie di acquisizione. Questa tesi si concentra sullo studio dell'imaging rapido utilizzando e ottimizzando la sequenza a spirale di Seiffert per l'imaging del sodio, fornendo un'analisi approfondita, sia a livello teorico che pratico, della sua effettiva efficacia. Lo studio proposto è iniziato simulando la sequenza mediante codice MATLAB, ponendo particolare attenzione alla ricostruzione dell'immagine attraverso l'innovativa copertura dello spazio k promossa dalla sequenza stessa. Questa fase ha fornito una solida base per comprenderne il funzionamento e selezionare la combinazione ottimale di parametri. La selezione è stata effettuata in modo che l'immagine ricostruita, dalla traiettoria, avesse un elevato rapporto segnale-rumore (SNR) e una ridotta full width at half maximum (FWHM) della funzione di diffusione del punto (PSF). Successivamente, l'indagine è stata estesa alla fase pratica, con l'applicazione della sequenza ottimizzata di Seiffert per acquisire, utilizzando uno scanner Philips 3T, immagini di fantocci contenenti concentrazioni note di sodio. Questa fase sperimentale è stata fondamentale per testare la sequenza in condizioni controllate e per comprenderne il comportamento in situazioni reali. L'indagine ha previsto il calcolo dell'SNR, il calcolo del FWHM dell'intensità del segnale prodotto dai fantocci e il confronto dei risultati ottenuti con quelli delle simulazioni. Una volta convalidata la coerenza, l'analisi è proseguita con la determinazione della concentrazione di sodio totale presente nei fantocci. L'ultimo step del progetto ha previsto l'applicazione della sequenza opportunamente configurata per acquisire immagini del sodio dal cervello di due volontari grazie allo scanner Philips 3T. Per valutare e validare ulteriormente la sequenza impiegata, sono stati calcolati l'SNR e il TSC di particolari aree cerebrali. I valori di SNR sono stati successivamente confrontati con i risultati ottenuti dalla fase sperimentale con i fantocci, confermando l'efficacia della sequenza utilizzata. Questa fase finale ha permesso di ottenere feedback tangibili sull’applicazione dell’approccio su dati reali, proiettando così la sequenza a spirale di Seiffert in vista del suo potenziale utilizzo nella ricerca medica. L'integrazione di simulazioni teoriche, esperimenti sui fantocci e analisi di dati reali in vivo ha contribuito a fornire una panoramica completa della validità e dell'efficacia di questa innovativa metodologia di imaging del sodio.
Ottimizzazione dell'acquisizione dell' MRI al sodio con traiettorie del k-spazio a spirale 3D di Seiffert
MOSCUZZA, LORENZO
2022/2023
Abstract
In recent years, sodium magnetic resonance imaging (MRI) has become increasingly popular thanks to technological progress, which has allowed greater availability of high magnetic field scanners and thanks to improvements in acquisition methodologies. This thesis focuses on the study of rapid imaging using and optimizing the Seiffert spiral sequence for sodium imaging, providing an in-depth analysis, both on a theoretical and practical level, of its actual effectiveness. The proposed study began by simulating the sequence using MATLAB code, paying particular attention to the reconstruction of the image through the innovative coverage of the k space promoted by the sequence itself. This phase provided a solid basis for understanding its operation and selecting the optimal combination of parameters. The selection was made so that the reconstructed image, from the trajectory, had a high signal-to-noise ratio (SNR) and a small full width at half maximum (FWHM) of the point spread function (PSF). Subsequently, the investigation was extended to the practical phase, with the application of the optimized Seiffert sequence to acquire, using a Philips 3T scanner, images of phantoms containing known concentrations of sodium. This experimental phase was fundamental to test the sequence in controlled conditions and to understand its behaviour in real situations. The investigation involved the calculation of the SNR, the calculation of the FWHM of the intensity of the signal produced by the ghosts and the comparison of the results obtained with those of the simulations. Once the coherence was validated, the analysis continued with the determination of the total sodium concentration present in the phantoms. The last step of the project involved the application of the appropriately configured sequence to acquire sodium images from the brains of two volunteers thanks to the Philips 3T scanner. To further evaluate and validate the sequence employed, the SNR and TSC of particular brain areas were calculated. The SNR values were subsequently compared with the results obtained from the experimental phase with the phantoms, confirming the effectiveness of the sequence used. This final phase allowed us to obtain tangible feedback on the application of the approach on real data, thus projecting the Seiffert spiral sequence in view of its potential use in medical research. The integration of theoretical simulations, phantom experiments and real in vivo data analyses helped to provide a comprehensive overview of the validity and effectiveness of this innovative sodium imaging methodology.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/17333