In eukaryotic cells splicing of pre-mRNAs plays a central role in gene expression. It generates mRNAs that can be translated into functional proteins. This important process also accounts for the production of a variety of different mature mRNAs from a single pre-mRNA. This process, called alternative splicing (AS), explains why the number of mRNA and protein isoforms in humans is much larger than the number of genes. Moreover, cells take advantage of AS, to regulate the abundance of their proteins, by coupling AS with the NMD. The first process produces transcripts, containing a PTC, which will not be translated since degraded by NMD. SRSF1 is among the major regulators of splicing events. This protein belongs to the SR protein family and contains three domains of primary importance: two RRM at the N-terminus and an RS motif at the C-terminus. RRM domains recognize and bind splicing regulatory sequence elements in pre-mRNAs, the RS domain promotes the spliceosome assembly. SRSF1 has been found up-regulated in several cancer types, where it fulfils an oncogenic activity, essentially by altering the splicing profile of its target transcripts. It is involved in a number of cancer-associated AS changes, in particular in those related to cell proliferation and motility. For instance, it binds a sequence in exon 12 of Ron proto-oncogene, stimulating the skipping of exon 11, and producing an isoform of Ron (ΔRon), which promotes cell motility. This feature is of particular importance during tumour progression, since the invasion of surrounding tissues is the first step to give rise to metastases. Cells that reside at invasive fronts of the tumours activate the EMT. This biological “reprogramming” of cell behaviour, essential during embryo development, is hijacked in cancer cells, in order to convert organized epithelial cells into isolated, migratory cells with mesenchymal morphology and features. In order to investigate the EMT occurring in cancer cells, colon adenocarcinoma SW480 cells were grown at low (LD) and high (HD) densities. LD cells mimic cells residing at the invasive fronts of tumours, HD cells mimic those in the central part of tumours. In this in vitro system, the expression of typical epithelial markers is higher in HD. Moreover, a substantial switch in the splicing profile of transcripts for SRSF1 has been observed. In particular, in HD cells there is a drop in the expression of the protein-coding transcript I and an increment of alternatively spliced products, together with a decrease of SRSF1 protein expression. In HD cells energy sources are rapidly consumed, likewise we observed a drop in ATP concentration, leading to activation of AMPK. We wondered if AMPK activation affects the regulation of SRSF1 alternative splicing. Pharmacological modulations of AMPK activity showed consequences in the splicing profile of SRSF1. These findings highlighted the possibility that AMPK was a key player. With the intent to consolidate these results, AMPK gene was silenced using siRNAs. Unexpectedly, neither in LD nor in HD cells consequences were observed. At this point, further explanations for the effects observed upon treatment with the AMPK inhibitor were explored. Like other small cell-permeable inhibitors of protein kinases, its activity is not 100% selective. This means that other cellular pathways were targeted, and possibly one of them was responsible for the switch in the splicing pattern of SRSF1. Among the off-targets of Compound C there are BMP-R, VEGF-R and TGFβ-R. By means of other inhibitors, each of these three signaling pathways was blocked. After each drug treatment the splicing profile of SRSF1 was examined and compared to untreated controls. Considering the overall results obtained, it is possible to sustain that, possible different signaling pathways are involved in the splicing regulation of SRSF1 in response to cell density but none, until now, was clearly identified as the solely responsible.

Nelle cellule eucariote lo splicing dei pre-mRNA gioca un ruolo fondamentale nell’espressione genica, generando mRNA che vengono tradotti correttamente in proteine. Inoltre questo processo produce una varietà di diversi mRNA maturi a partire da un singolo pre-mRNA. Qui viene definito splicing alternativo (AS) e spiega perché nell’uomo il numero di mRNA e proteine è maggiore rispetto al numero di geni. Inoltre le cellule sfruttano lo AS, accoppiato con il NMD pathway, per regolare la quantità delle loro proteine: quando lo AS produce trascritti contenenti un PTC, questi non sono tradotti ma degradati dall’NMD. SRSF1 è tra i principali regolatori degli eventi di splicing. Esso appartiene alle proteine della famiglia SR e contiene tre domini di primaria importanza: due RRM all’N-terminale e un RS al C-terminale. I domini RRM riconoscono e legano sequenze regolatrici di splicing, il dominio RS promuove l’assemblaggio dello spliceosoma. SRSF1 è stato trovato up-regolato in svariati tipi di tumori, dove esplica un’attività oncogenica alterando il profilo di splicing dei suoi trascritti target. In particolare altera lo AS di geni legati alla proliferazione e motilità cellulate. Può infatti legare una sequenza nell’esone 12 del proto-oncogene Ron, stimolando lo skipping dell’esone 11 e producendo ΔRon che constitutivamente promuove la motilità cellulare. Questa proprietà è di particolare importanza durante la progressione tumorale: l’invasione dei tessuti circostanti è il primo passo per originare metastasi. Le cellule che risiedono ai fronti invasivi dei tumori attivano la EMT. Questa ‘riprogrammazione’ biologica di caratteristiche base della cellula, essenziale durante lo sviluppo embrionale, viene qui utilizzata per convertire cellule epiteliali in cellule migranti, isolate, e con morfologia e proprietà mesenchimali. Nel nostro studio, le cellule SW480 sono cresciute a bassa (LD) e ad alta (HD) densità, con l’obbiettivo di studiare l’EMT nelle cellule tumorali. Le LD mimano le cellule risiedenti nei fronti invasivi del tumore, le HD quelle nelle parti centrali. In questo sistema in vitro, l’espressione di marker epiteliali, è maggiore nelle HD. Inoltre, è stato osservato un sostanziale cambiamento nello splicing di SRSF1. Nelle HD si verifica un calo nell’espressione del trascritto codificante e un incremento dei prodotti alternativi di splicing, insieme ad una diminuzione dell’espressione della proteina SRSF1. Nelle cellule HD, le risorse energetiche sono consumate rapidamente, determinando un calo della concentrazione di ATP, che attiva di conseguenza AMPK. Ci siamo chiesti se l’attivazione di AMPK abbia un controllo sulla regolazione dello splicing alternativo di SRSF1. La modulazione dell’attività di AMPK ha mostrato conseguenze nello splicing di SRSF1, evidenziando la possibilità che AMPK ricopra un ruolo chiave nel processo. Con l’intento di consolidare questi risultati, il gene AMPK è stato silenziato. Inaspettatamente non sono state osservate conseguenze né nelle HD né nelle LD. A questo punto, per spiegare gli effetti osservati in seguito al trattamento con un inibitore di AMPK (Compound C), sono stati intrapresi ulteriori esperimenti. Come altri inibitori, Compound C non è selettivo al 100%. Questo significa che altri pathway sono stati alterati, e possibilmente uno di essi è responsabile dello switch nello splicing di SRSF1. Tra gli off-target del Compound C vi sono BMPR, VEGFR and TGFβR. Utilizzando altri inibitori ognuno di questi signaling pathway è stato bloccato. Dopo ogni trattamento lo splicing di SRSF1 è stato esaminato e confrontato con controlli non trattati. Considerando tutti i risultati ottenuti, è possibile sostenere che diversi pathway potrebbero essere coinvolti nella regolazione dello splicing di SRSF1 in risposta alla densità cellulare, ma nessuno è stato identificato come unico responsabile.

Cell metabolism impacts the splicing profile of SRSF1 gene transcripts

RIPAMONTI, MARTA
2015/2016

Abstract

In eukaryotic cells splicing of pre-mRNAs plays a central role in gene expression. It generates mRNAs that can be translated into functional proteins. This important process also accounts for the production of a variety of different mature mRNAs from a single pre-mRNA. This process, called alternative splicing (AS), explains why the number of mRNA and protein isoforms in humans is much larger than the number of genes. Moreover, cells take advantage of AS, to regulate the abundance of their proteins, by coupling AS with the NMD. The first process produces transcripts, containing a PTC, which will not be translated since degraded by NMD. SRSF1 is among the major regulators of splicing events. This protein belongs to the SR protein family and contains three domains of primary importance: two RRM at the N-terminus and an RS motif at the C-terminus. RRM domains recognize and bind splicing regulatory sequence elements in pre-mRNAs, the RS domain promotes the spliceosome assembly. SRSF1 has been found up-regulated in several cancer types, where it fulfils an oncogenic activity, essentially by altering the splicing profile of its target transcripts. It is involved in a number of cancer-associated AS changes, in particular in those related to cell proliferation and motility. For instance, it binds a sequence in exon 12 of Ron proto-oncogene, stimulating the skipping of exon 11, and producing an isoform of Ron (ΔRon), which promotes cell motility. This feature is of particular importance during tumour progression, since the invasion of surrounding tissues is the first step to give rise to metastases. Cells that reside at invasive fronts of the tumours activate the EMT. This biological “reprogramming” of cell behaviour, essential during embryo development, is hijacked in cancer cells, in order to convert organized epithelial cells into isolated, migratory cells with mesenchymal morphology and features. In order to investigate the EMT occurring in cancer cells, colon adenocarcinoma SW480 cells were grown at low (LD) and high (HD) densities. LD cells mimic cells residing at the invasive fronts of tumours, HD cells mimic those in the central part of tumours. In this in vitro system, the expression of typical epithelial markers is higher in HD. Moreover, a substantial switch in the splicing profile of transcripts for SRSF1 has been observed. In particular, in HD cells there is a drop in the expression of the protein-coding transcript I and an increment of alternatively spliced products, together with a decrease of SRSF1 protein expression. In HD cells energy sources are rapidly consumed, likewise we observed a drop in ATP concentration, leading to activation of AMPK. We wondered if AMPK activation affects the regulation of SRSF1 alternative splicing. Pharmacological modulations of AMPK activity showed consequences in the splicing profile of SRSF1. These findings highlighted the possibility that AMPK was a key player. With the intent to consolidate these results, AMPK gene was silenced using siRNAs. Unexpectedly, neither in LD nor in HD cells consequences were observed. At this point, further explanations for the effects observed upon treatment with the AMPK inhibitor were explored. Like other small cell-permeable inhibitors of protein kinases, its activity is not 100% selective. This means that other cellular pathways were targeted, and possibly one of them was responsible for the switch in the splicing pattern of SRSF1. Among the off-targets of Compound C there are BMP-R, VEGF-R and TGFβ-R. By means of other inhibitors, each of these three signaling pathways was blocked. After each drug treatment the splicing profile of SRSF1 was examined and compared to untreated controls. Considering the overall results obtained, it is possible to sustain that, possible different signaling pathways are involved in the splicing regulation of SRSF1 in response to cell density but none, until now, was clearly identified as the solely responsible.
2015
Cell metabolism impacts the splicing profile of SRSF1 gene transcripts
Nelle cellule eucariote lo splicing dei pre-mRNA gioca un ruolo fondamentale nell’espressione genica, generando mRNA che vengono tradotti correttamente in proteine. Inoltre questo processo produce una varietà di diversi mRNA maturi a partire da un singolo pre-mRNA. Qui viene definito splicing alternativo (AS) e spiega perché nell’uomo il numero di mRNA e proteine è maggiore rispetto al numero di geni. Inoltre le cellule sfruttano lo AS, accoppiato con il NMD pathway, per regolare la quantità delle loro proteine: quando lo AS produce trascritti contenenti un PTC, questi non sono tradotti ma degradati dall’NMD. SRSF1 è tra i principali regolatori degli eventi di splicing. Esso appartiene alle proteine della famiglia SR e contiene tre domini di primaria importanza: due RRM all’N-terminale e un RS al C-terminale. I domini RRM riconoscono e legano sequenze regolatrici di splicing, il dominio RS promuove l’assemblaggio dello spliceosoma. SRSF1 è stato trovato up-regolato in svariati tipi di tumori, dove esplica un’attività oncogenica alterando il profilo di splicing dei suoi trascritti target. In particolare altera lo AS di geni legati alla proliferazione e motilità cellulate. Può infatti legare una sequenza nell’esone 12 del proto-oncogene Ron, stimolando lo skipping dell’esone 11 e producendo ΔRon che constitutivamente promuove la motilità cellulare. Questa proprietà è di particolare importanza durante la progressione tumorale: l’invasione dei tessuti circostanti è il primo passo per originare metastasi. Le cellule che risiedono ai fronti invasivi dei tumori attivano la EMT. Questa ‘riprogrammazione’ biologica di caratteristiche base della cellula, essenziale durante lo sviluppo embrionale, viene qui utilizzata per convertire cellule epiteliali in cellule migranti, isolate, e con morfologia e proprietà mesenchimali. Nel nostro studio, le cellule SW480 sono cresciute a bassa (LD) e ad alta (HD) densità, con l’obbiettivo di studiare l’EMT nelle cellule tumorali. Le LD mimano le cellule risiedenti nei fronti invasivi del tumore, le HD quelle nelle parti centrali. In questo sistema in vitro, l’espressione di marker epiteliali, è maggiore nelle HD. Inoltre, è stato osservato un sostanziale cambiamento nello splicing di SRSF1. Nelle HD si verifica un calo nell’espressione del trascritto codificante e un incremento dei prodotti alternativi di splicing, insieme ad una diminuzione dell’espressione della proteina SRSF1. Nelle cellule HD, le risorse energetiche sono consumate rapidamente, determinando un calo della concentrazione di ATP, che attiva di conseguenza AMPK. Ci siamo chiesti se l’attivazione di AMPK abbia un controllo sulla regolazione dello splicing alternativo di SRSF1. La modulazione dell’attività di AMPK ha mostrato conseguenze nello splicing di SRSF1, evidenziando la possibilità che AMPK ricopra un ruolo chiave nel processo. Con l’intento di consolidare questi risultati, il gene AMPK è stato silenziato. Inaspettatamente non sono state osservate conseguenze né nelle HD né nelle LD. A questo punto, per spiegare gli effetti osservati in seguito al trattamento con un inibitore di AMPK (Compound C), sono stati intrapresi ulteriori esperimenti. Come altri inibitori, Compound C non è selettivo al 100%. Questo significa che altri pathway sono stati alterati, e possibilmente uno di essi è responsabile dello switch nello splicing di SRSF1. Tra gli off-target del Compound C vi sono BMPR, VEGFR and TGFβR. Utilizzando altri inibitori ognuno di questi signaling pathway è stato bloccato. Dopo ogni trattamento lo splicing di SRSF1 è stato esaminato e confrontato con controlli non trattati. Considerando tutti i risultati ottenuti, è possibile sostenere che diversi pathway potrebbero essere coinvolti nella regolazione dello splicing di SRSF1 in risposta alla densità cellulare, ma nessuno è stato identificato come unico responsabile.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14239/18619