Traumatic brain injury (TBI) is a significant clinical and social problem worldwide. Huge progress has been made clinically in the field of TBI during the last 30-40 years, from intensive critical care to rehabilitation, with dramatically increased survival rates and decrease morbidity rates. Yet, the enigmatic problem regarding the injured nerve cell and its inability to regenerate and replace itself after injury is yet unsolved and effective strategies for treatment of the injured and dying nerve cell is not available. TBI is most often caused by road traffic accidents, falls and sport-related injuries. Cognitive and physical impairments affect the life of survivors and indirectly the life of their families and carers. The traumatic event results in immediate primary injury, which includes neuronal and glial cell death, and it is followed by a complex cascade of secondary events, ranging from demyelination to inflammation and diffuse axonal injury, eventually exacerbating white matter injury. These secondary processes have been shown to contribute to delayed cell death and prolonged functional deficits. Understanding the evolution of secondary injury and the mechanisms responsible for prolonged cell death may offer insight in how to best approach and treat TBI patients. The aim of this thesis is to investigate diffuse axonal injury and white matter pathology, with focus on oligodendrocyte and oligodendrocyte progenitor cells (OPCs) activity, in a rotational-TBI model in rats. Results will be compared to those of a penetrating brain injury model and sham-operated subjects. While numerous studies have characterized TBI pathology after weight-drop, controlled cortical impact or fluid percussion injury, detailed information on the histopathology that evolves after rotational injury model and on the timing of ensuing injury is incomplete. TBI is often a complex event including different kinds of injury mechanisms, where rotational injury is one such mechanism. Hallmark of rotational injury is diffuse axonal injury (DAI), with myelin degradation and loss of oligodendrocyte. Indeed, as the head is subjected to acceleration/deceleration forces, it rotates in the sagittal plane with the neck acting as pivot. The brain, having a different tissue density from the skull, lags behind and is subjected to shear stress with axonal stretching and tearing. In this thesis, axonal injury, myelin damage, oligodendrocyte death and OPCs proliferation are studied by immunohistochemical techniques. This study showed that oligodendrocyte death and myelin damage are observed extensively after the more severe penetrating injury, while limited to most-susceptible areas of white matter tracts after rotational injury. Although minor, an increased number of OPCs could be observed starting from 72 hours post-injury. These results confirmed that diffuse axonal injury and white matter pathology are key components of the physiopathology of TBI, that damage is proportional to the severity of injury, and that some regions are more affected than others depending on the mechanics of injury. The ability of OPCs to proliferate in response to injury might offer a therapeutic target to enhance repair and aid in functional recovery, at least in mild-TBI settings. As degradation and reactive proliferation in the time window investigated appear of mild intensity, it is likely that such processes are just starting, thus making 24-72 hours post-injury good timing for therapeutical intervention.
Il trauma cranico è un importante problema clinico e sociale a livello mondiale. Recenti progressi clinici hanno aumentato la sopravvivenza e diminuito la morbosità di tale patologia. Tuttavia, rimane l’enigma riguardo la cellula nervosa lesionata e la sua abilità di rigenerazione e di sostituzione. Il trauma cranico è frequentemente causato da incidenti stradali, cadute e traumi legati allo sport. Ciò impatta negativamente la vita del sopravvissuto, che riporta limitazioni sia cognitive che fisiche. Il trauma scaturisce in un primo momento in lesioni primarie, come la morte di cellule gliali e neuronali, ed è seguito da una cascata di complessi eventi secondari, che variano dalla demielinizzazione all’infiammazione e al danno assonale diffuso, che esacerbano il danno della sostanza bianca. È stato dimostrato che questi processi secondari contribuiscono alla morte cellulare che avviene anche a distanza di tempo e a duraturi deficit funzionali. Far luce sull’evoluzione delle lesioni secondarie e sui meccanismi responsabili della morte cellulare protratta nel tempo potrebbe offrire spunti su come approcciare e curare al meglio tali pazienti. Lo scopo di questa tesi è di investigare il danno assonale diffuso e la patologia della sostanza bianca, con particolare attenzione all’attività degli oligodendrociti e dei loro progenitori in un modello di trauma cranico di tipo rotazionale sperimentato sul ratto. I risultati sono stati confrontati sia con quelli dei soggetti sottoposti a trauma cranico di tipo penetrante sia con quelli dei soggetti sottoposti a chirurgia placebo. Sebbene numerosi studi hanno permesso di caratterizzare tale patologia a seguito di traumi cranici di tipo focale, informazioni dettagliate sull’istopatologia che si sviluppa a seguito di un trauma cranico di tipo rotazionale e sulle sue tempistiche, sono scarse. Il trauma cranico è un evento complesso che si compone di diversi meccanismi di lesione, tra i quali è presente il meccanismo di tipo rotazionale. L’elemento caratterizzante il trauma cranico di tipo rotazionale è il danno assonale diffuso. Essendo il capo soggetto a forze di accelerazione/decelerazione, questo ruota nel piano sagittale con il collo che si comporta da fulcro. Il cervello, avendo una densità tissutale diversa da quella della scatola cranica, rimane indietro ed è soggetto a sforzo di taglio con conseguente stiramento e lacerazione assonale. In questa tesi sono state studiate, con tecnica di immunoistochimica, la lesione assonale, il danno alla mielina, la morte degli oligodendrociti e la proliferazione dei loro progenitori (OPCs). Questo studio mostra che la morte degli oligodendrociti e del danno alla mielina sono presenti estensivamente a seguito del trauma di tipo penetrante, che produce un danno più grave, ma risultano limitati alle regioni di sostanza bianca più suscettibili a seguito del trauma di tipo rotazionale. Sebbene in maniera lieve, si è potuto osservare un aumento di cellule OPCs a partire da 72 ore post-trauma. Questi risultati confermano che il danno assonale diffuso e la patologia della sostanza bianca sono componenti chiave della fisiopatologia del trauma cranico, che il danno è proporzionale alla gravità del trauma, e che alcune regioni sono più interessate di altre dipendentemente dal meccanismo del trauma. L’abilità delle cellule OPCs di proliferare a seguito di lesioni può servire da target terapeutico per aumentare le possibilità di guarigione delle lesioni cerebrali e di contribuire al recupero funzionale, almeno per quanto riguarda traumi cranici di media intensità. Dato che la degradazione e la proliferazione reattiva osservate durante la finestra di tempo scelta non sono apparse abbondanti, è possibile ipotizzare che questi processi siano giusto all’inizio, rendendo così le 24-72 ore post-trauma momenti importanti per l’intervento terapeutico.
Diffuse axonal injury in the rat: a study of post-traumatic axonal injury and oligodendrocyte activity in a rotational injury model
LOSURDO, MICHELA
2017/2018
Abstract
Traumatic brain injury (TBI) is a significant clinical and social problem worldwide. Huge progress has been made clinically in the field of TBI during the last 30-40 years, from intensive critical care to rehabilitation, with dramatically increased survival rates and decrease morbidity rates. Yet, the enigmatic problem regarding the injured nerve cell and its inability to regenerate and replace itself after injury is yet unsolved and effective strategies for treatment of the injured and dying nerve cell is not available. TBI is most often caused by road traffic accidents, falls and sport-related injuries. Cognitive and physical impairments affect the life of survivors and indirectly the life of their families and carers. The traumatic event results in immediate primary injury, which includes neuronal and glial cell death, and it is followed by a complex cascade of secondary events, ranging from demyelination to inflammation and diffuse axonal injury, eventually exacerbating white matter injury. These secondary processes have been shown to contribute to delayed cell death and prolonged functional deficits. Understanding the evolution of secondary injury and the mechanisms responsible for prolonged cell death may offer insight in how to best approach and treat TBI patients. The aim of this thesis is to investigate diffuse axonal injury and white matter pathology, with focus on oligodendrocyte and oligodendrocyte progenitor cells (OPCs) activity, in a rotational-TBI model in rats. Results will be compared to those of a penetrating brain injury model and sham-operated subjects. While numerous studies have characterized TBI pathology after weight-drop, controlled cortical impact or fluid percussion injury, detailed information on the histopathology that evolves after rotational injury model and on the timing of ensuing injury is incomplete. TBI is often a complex event including different kinds of injury mechanisms, where rotational injury is one such mechanism. Hallmark of rotational injury is diffuse axonal injury (DAI), with myelin degradation and loss of oligodendrocyte. Indeed, as the head is subjected to acceleration/deceleration forces, it rotates in the sagittal plane with the neck acting as pivot. The brain, having a different tissue density from the skull, lags behind and is subjected to shear stress with axonal stretching and tearing. In this thesis, axonal injury, myelin damage, oligodendrocyte death and OPCs proliferation are studied by immunohistochemical techniques. This study showed that oligodendrocyte death and myelin damage are observed extensively after the more severe penetrating injury, while limited to most-susceptible areas of white matter tracts after rotational injury. Although minor, an increased number of OPCs could be observed starting from 72 hours post-injury. These results confirmed that diffuse axonal injury and white matter pathology are key components of the physiopathology of TBI, that damage is proportional to the severity of injury, and that some regions are more affected than others depending on the mechanics of injury. The ability of OPCs to proliferate in response to injury might offer a therapeutic target to enhance repair and aid in functional recovery, at least in mild-TBI settings. As degradation and reactive proliferation in the time window investigated appear of mild intensity, it is likely that such processes are just starting, thus making 24-72 hours post-injury good timing for therapeutical intervention.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/20323