Over the past decades, various studies have highlighted that carbohydrates are involved in the generation of a wide range of biological processes. Indeed, glycoproteins provide communication between cells and their extracellular environment, delivering biological messages through the information-rich surface that is shown to their surroundings. This can trigger phenomena such as the blood-clotting cascade, bacterial and viral infections as well as cancer metastasis. The molecular details of these recognition events are, however, still not thoroughly understood. As a consequence, increasing our insight into the carbohydrate chemistry will improve our possibilities to fight bacterial and viral infections, but also to interfere with the growth and spread of cancer. As the understanding of the biological functions of glycostructures increases, the need to develop more efficient synthetic procedures for oligosaccharide production in large scale has become a major subject despite the chemically complex synthesis of these molecules. In fact, the conventional synthesis of such structures usually requires multistep processes, involving different protecting groups, yielding mixtures of products and, in some cases, low yields and insufficient reproducibility. Nevertheless, their physiological relevance has stimulated researchers to focus their effort on the development of an alternative approach, based on the use of enzymes as biocatalysts, leading to significant advances and making possible a deeper understanding of the role of glycostructures in health and disease. In this work we have considered the enzymatic regioselective hydrolysis of peracetylated galactose, in order to obtain a monodeprotected sugar bearing only one free hydroxyl group in the anomeric position. Such a structure can be used as a key intermediate in the preparation of various glycoderivatives with biological activity. This goal has been achieved adopting a lipase as biocatalyst. The application of lipases in both the hydrolysis of esters and trans-esterification reactions is widely spread due to their regio-, stereo- and chemoselectivity and their reusability in potentially scalable cycle-reactions. We have reported the optimization of the immobilization procedure of commercial lipase from Pseudomonas stutzeri on four different supports and through different approaches, obtaining moderate to high immobilization yield (62-85%) depending on the support and the binding chemistry, as well as good hydrolytic activity in the preparation of the monodeprotected galactose in the anomeric position. Upon optimizing the reaction conditions, the E-factor value (Environmental factor, defined as mass ratio of waste to the desired product) was calculated, highlighting that the biotechnological route is more environmentally friendly than the standard chemical one.
Immobilizzazione di lipasi da Pseudomonas stutzeri e utilizzo del biocatalizzatore nell'idrolisi regioselettiva di β-D-galattosio peracetilato in condizioni ecosostenibili Gli oligosaccaridi sono coinvolti in numerosi processi biologici quali l'attivazione e la modulazione della risposta immunitaria, il differenziamento tissutale, il riconoscimento e l’adesione cellulare. Alterazioni chimiche di questi composti rivestono un ruolo cruciale nell'innesco e nella progressione di molti stati patologici, in particolare nello sviluppo tumorale e nella formazione di metastasi. La necessitá di approfondire i meccanismi molecolari dei processi in cui gli oligosaccaridi svolgono un ruolo chiave e di disporre di farmaci in grado di agire sui processi che li coinvolgono, richiede la disponibilitá di quantitá apprezzabili di oligosaccaridi con un’elevata purezza e, di conseguenza, di un efficiente schema sintetico per il loro ottenimento su larga scala. In questa tesi è stata studiata l'idrolisi enzimatica regioselettiva di β-D-galattosio peracetilato allo scopo di ottenere il corrispondente derivato deprotetto esclusivamente in posizione anomerica da utilizzare come intermedio sintetico per la preparazione di glicoderivati a potenziale o riconosciuta attivitá biologica. L’approccio biocatalitico presenta molti vantaggi: avviene in condizioni blande, è facilmente scalabile e non richiede l’impiego di complesse reazioni di protezione e deprotezione. Le lipasi sono gli enzimi piú utilizzati in biocatalisi, anche su scala industriale. Sono per lo piú commercialmente disponibili, non richiedono l'uso di cofattori, sono stabili in solvente organico e hanno un'ampia specificitá di substrato, associata spesso ad alti valori di regio-, chemo- ed enantioselettivitá. La lipasi commerciale da Pseudomonas stutzeri (PSL) è stata immobilizzata su quattro diversi supporti (Celite® 545, Lewatit® VP OC 1600, Sepabeads™ EC-EP, RelyZyme™ EP 403) ottenendo rese di immobilizzazione variabili (62-85%) a seconda del carrier impiegato e della chimica di legame. Il derivato immobilizzato su Sepabeads™ EC-EP mediante interazione covalente è stato utilizzato per l'ídrolisi preparativa del β-D-galattosio peracetilato, fornendo una resa pari la 64%. Il calcolo dell'E-factor (Environmental factor, definito come rapporto tra la massa dello scarto e quella del prodotto desiderato) ha evidenziato che la sintesi biocatalitica è piú ecocompatibile rispetto a quella convenzionale.
Immobilization of Pseudomonas stutzeri lipase and its use in the regioselective hydrolysis of peracetylated β-D-galactose under sustainable conditions
PORCELLI, CATERINA
2014/2015
Abstract
Over the past decades, various studies have highlighted that carbohydrates are involved in the generation of a wide range of biological processes. Indeed, glycoproteins provide communication between cells and their extracellular environment, delivering biological messages through the information-rich surface that is shown to their surroundings. This can trigger phenomena such as the blood-clotting cascade, bacterial and viral infections as well as cancer metastasis. The molecular details of these recognition events are, however, still not thoroughly understood. As a consequence, increasing our insight into the carbohydrate chemistry will improve our possibilities to fight bacterial and viral infections, but also to interfere with the growth and spread of cancer. As the understanding of the biological functions of glycostructures increases, the need to develop more efficient synthetic procedures for oligosaccharide production in large scale has become a major subject despite the chemically complex synthesis of these molecules. In fact, the conventional synthesis of such structures usually requires multistep processes, involving different protecting groups, yielding mixtures of products and, in some cases, low yields and insufficient reproducibility. Nevertheless, their physiological relevance has stimulated researchers to focus their effort on the development of an alternative approach, based on the use of enzymes as biocatalysts, leading to significant advances and making possible a deeper understanding of the role of glycostructures in health and disease. In this work we have considered the enzymatic regioselective hydrolysis of peracetylated galactose, in order to obtain a monodeprotected sugar bearing only one free hydroxyl group in the anomeric position. Such a structure can be used as a key intermediate in the preparation of various glycoderivatives with biological activity. This goal has been achieved adopting a lipase as biocatalyst. The application of lipases in both the hydrolysis of esters and trans-esterification reactions is widely spread due to their regio-, stereo- and chemoselectivity and their reusability in potentially scalable cycle-reactions. We have reported the optimization of the immobilization procedure of commercial lipase from Pseudomonas stutzeri on four different supports and through different approaches, obtaining moderate to high immobilization yield (62-85%) depending on the support and the binding chemistry, as well as good hydrolytic activity in the preparation of the monodeprotected galactose in the anomeric position. Upon optimizing the reaction conditions, the E-factor value (Environmental factor, defined as mass ratio of waste to the desired product) was calculated, highlighting that the biotechnological route is more environmentally friendly than the standard chemical one.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/20939