In recent decades, the EU is focusing on ways to mitigate environmental problems through the implementation of more restrictive energy policies. Pollution, depletion of resources and global warming are just some of the main problems affecting the environment and their manifestation takes the form of climate change, now perceived in a shared way by society. The changing climate conditions is nothing more than the result of political, economic and technical choices of the past, no longer in conformity with the present. These choices have considerable repercussions on the construction sector, which is currently one of the main causes of pollution, due to the excessive CO2 emissions released into the environment, following the processes of heating and cooling of the interior. This is due to the progressive aging of the European building stock, characterized by building envelopes, which are no longer able to guarantee conditions of internal comfort, and by an obsolete and inefficient system. Therefore, a turnaround is needed: from energy-consuming buildings to buildings designed according to an integrated perspective between the envelope and systems, in which the annual energy requirement is reduced and the energy consumption is covered, in large part, by renewable energy sources (RES). The challenge, therefore, must not be limited to the construction of new buildings, but must aspire to energetically requalify the existing building stock, where it is economically feasible, as well as technically. To monitor the energy performance of existing buildings, the work done by European and national observatories is essential, who are able to provide a unified view of the conditions in the construction sector and suggest the actions that must be taken to improve it. The starting point for pursuing the objectives set by strategic packages and European directives is the current NZEB (Nearly Zero Energy Building) model. The further step forward could consist in connecting individual NZEBs to an intelligent energy distribution network, called a smart grid. This connection would favor the transition from NZEB to PEB: Positive Energy Buildings designed with the potential to produce more energy than is necessary for their sustenance, thus contributing to the energy support of other buildings connected to them. As a design application of these two models, the last part will deal with the analysis of a residential NZEB, presented as an example of good design in compliance with the requirements indicated by national legislation (DM 26/06/2015). Starting from the description of the case study through its geometric and technical characteristics, the stratigraphic components of the building envelope and the subsystems that constitute the plant system, energy performance will be analysed in winter and summer mode through a dynamical building performance simulation. Finally, the results obtained will be discussed with the dual objective of comparing the case study with that of reference in accordance with the definition of "nearly zero energy building" and demonstrating that the case study has the potential to aspire to the PEB model.
Negli ultimi decenni, l’Unione Europea sta ponendo l’attenzione sulle modalità di mitigazione delle problematiche ambientali, attraverso l’implementazione di politiche energetiche sempre più restrittive. Inquinamento, esaurimento delle risorse e riscaldamento globale sono solo alcuni dei principali problemi che affliggono l'ambiente e il loro manifestarsi si concretizza nel cambiamento climatico, ormai percepito in modo condiviso da tutta la società. Il mutamento delle condizioni climatiche non è altro che il risultato di scelte politiche, economiche e tecniche del passato, non più conformi al presente. Queste scelte hanno ricadute considerevoli sul settore delle costruzioni, che attualmente è uno dei principali responsabili di inquinamento, a causa delle eccessive emissioni di CO2 rilasciate in ambiente, a seguito dei processi di riscaldamento e raffrescamento degli ambienti interni degli edifici. Ciò è imputabile al progressivo invecchiamento del patrimonio immobiliare europeo, connotato da involucri edilizi, che non sono più in grado di garantire condizioni di comfort interno, e da un apparato impiantistico obsoleto e poco efficiente. Pertanto, è necessaria un’inversione di tendenza: da edifici energivori a edifici progettati secondo un’ottica integrata tra involucro e impianti, in cui il fabbisogno energetico annuale sia ridotto e i consumi energetici siano coperti, in larga parte, da fonti energetiche rinnovabile (FER). La sfida, quindi, non si deve limitare alla realizzazione di nuovi edifici, ma deve aspirare a riqualificare energeticamente lo stock edilizio esistente, laddove sia fattibile dal punto di vista economico, oltre che tecnico. Per monitorare le prestazioni energetiche degli edifici esistenti è fondamentale il lavoro svolto da osservatori europei e nazionali, che sono in grado di fornire una visione unitaria delle condizioni del settore edilizio e suggerire le azioni che devono essere intraprese per un suo miglioramento. Il punto di partenza, per perseguire il raggiungimento degli obiettivi fissati da pacchetti strategici e direttive europee, è rappresentato dall’attuale modello NZEB (Nearly Zero Energy Building). L'ulteriore passo in avanti potrebbe consistere nel collegamento di singoli NZEB a una rete di distribuzione di energia intelligente, chiamata smart grid. Questa connessione favorirebbe la transizione da NZEB a PEB (Positive Energy Building), ovvero edifici a energia positiva progettati e dimensionati con le potenzialità per produrre più energia di quanta sia necessaria al loro sostentamento, contribuendo così al supporto energetico di altri edifici ad essi collegati. Come applicazione progettuale di questi due modelli, l’ultima parte tratterà l’analisi di un edificio residenziale certificato NZEB, presentato come un esempio di buona progettazione conforme ai requisiti indicati dalla normativa nazionale (DM 26/06/2015). A partire dalla descrizione del caso studio attraverso le sue caratteristiche geometriche e tecniche, le componenti stratigrafiche dell’involucro edilizio e i sottosistemi che costituiscono l’apparato impiantistico, si analizzeranno le prestazioni energetiche in regime invernale ed estivo attraverso una simulazione di calcolo in regime dinamico. Infine, i risultati ottenuti verranno discussi con il duplice obiettivo finale di porre a confronto l’edificio oggetto di studio con quello di riferimento conforme alla definizione di “edificio a energia quasi zero” e dimostrare che il caso studio possiede le potenzialità per aspirare al modello PEB.
Verso gli edifici a energia positiva: Un'applicazione progettuale su un edificio NZEB mediante simulazione energetica dinamica
LENTINI, GIORGIA
2018/2019
Abstract
In recent decades, the EU is focusing on ways to mitigate environmental problems through the implementation of more restrictive energy policies. Pollution, depletion of resources and global warming are just some of the main problems affecting the environment and their manifestation takes the form of climate change, now perceived in a shared way by society. The changing climate conditions is nothing more than the result of political, economic and technical choices of the past, no longer in conformity with the present. These choices have considerable repercussions on the construction sector, which is currently one of the main causes of pollution, due to the excessive CO2 emissions released into the environment, following the processes of heating and cooling of the interior. This is due to the progressive aging of the European building stock, characterized by building envelopes, which are no longer able to guarantee conditions of internal comfort, and by an obsolete and inefficient system. Therefore, a turnaround is needed: from energy-consuming buildings to buildings designed according to an integrated perspective between the envelope and systems, in which the annual energy requirement is reduced and the energy consumption is covered, in large part, by renewable energy sources (RES). The challenge, therefore, must not be limited to the construction of new buildings, but must aspire to energetically requalify the existing building stock, where it is economically feasible, as well as technically. To monitor the energy performance of existing buildings, the work done by European and national observatories is essential, who are able to provide a unified view of the conditions in the construction sector and suggest the actions that must be taken to improve it. The starting point for pursuing the objectives set by strategic packages and European directives is the current NZEB (Nearly Zero Energy Building) model. The further step forward could consist in connecting individual NZEBs to an intelligent energy distribution network, called a smart grid. This connection would favor the transition from NZEB to PEB: Positive Energy Buildings designed with the potential to produce more energy than is necessary for their sustenance, thus contributing to the energy support of other buildings connected to them. As a design application of these two models, the last part will deal with the analysis of a residential NZEB, presented as an example of good design in compliance with the requirements indicated by national legislation (DM 26/06/2015). Starting from the description of the case study through its geometric and technical characteristics, the stratigraphic components of the building envelope and the subsystems that constitute the plant system, energy performance will be analysed in winter and summer mode through a dynamical building performance simulation. Finally, the results obtained will be discussed with the dual objective of comparing the case study with that of reference in accordance with the definition of "nearly zero energy building" and demonstrating that the case study has the potential to aspire to the PEB model.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/22256