Introduced by Martin Hairer in 2013, the Theory of "Regularity Structures" provides a new theoretical framework to formulate, solve and analyse the solution to a family of semi-linear stochastic partial differential equations related to some relevant physical models. The ``key-idea" of this new theory lies in the construction of a stochastic local Taylor expansion for stochastic multi-dimensional distributions up to a certain remainder. This idea, even if it requires some analytical technical results in order to be stated rigorously, allows to treat multidimensional stochastic continuous objects with a pathwise approach and, at the same time, provides a new family of operations extending some classical operation of real analysis in this new context. In this thesis our aim will be to introduce some important results obtained in this new theory and show an explicit application to a family of differential equations related to stochastic calculus.
Introdotta da Martin Hairer nel 2013, la teoria delle "Strutture di Regolarità" fornisce un nuovo approccio per formulare, risolvere e analizzare una classe di equazioni alle derivate parziali stocastiche semilineari legate a molti modelli fisici. L'idea di fondo consiste nella costruzione di uno sviluppo di Taylor stocastico con resto applicato a distribuzioni aleatorie multidimensionali. Questa idea, anche se richiede molti risultati analitici per essere formulata in maniera rigorosa, consente di estendere alcune fra le operazioni classiche dell'analisi reale in questo nuovo contesto. In questa tesi, lo scopo del nostro lavoro sarà quello di introdurre alcuni risultati importanti ottenuti in questo contesto e mostrare un'applicazione della teoria a una particolare famiglia di equazioni differenziali legate al calcolo stocastico.
An Introduction to the theory of Regularity Structures.
BELLINGERI, CARLO
2014/2015
Abstract
Introduced by Martin Hairer in 2013, the Theory of "Regularity Structures" provides a new theoretical framework to formulate, solve and analyse the solution to a family of semi-linear stochastic partial differential equations related to some relevant physical models. The ``key-idea" of this new theory lies in the construction of a stochastic local Taylor expansion for stochastic multi-dimensional distributions up to a certain remainder. This idea, even if it requires some analytical technical results in order to be stated rigorously, allows to treat multidimensional stochastic continuous objects with a pathwise approach and, at the same time, provides a new family of operations extending some classical operation of real analysis in this new context. In this thesis our aim will be to introduce some important results obtained in this new theory and show an explicit application to a family of differential equations related to stochastic calculus.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/22374