Every year in Italy, about half million of hospitalised patients contract an infection in hospital, namely between 5 and 17%, 3% of which die. These illnesses are referred to as nosocomial diseases and are defined as infections that arise 48 hours after the entrance in hospital or following the discharge; these infections were neither manifest, nor in incubation in the affected person, at the time of the hospitalisation. In this category can also be included the infections that occur in out-of-hospital healthcare locations (Healthcare-Associated Infections – HAIs), such as care home for the elderly and day hospital. HAIs have a strong impact both on the social and on the economic sphere, implying a health risk not only for patients, but also for hospital staff, volunteer assistants, students and interns. Risk factors include the wide use of antibiotics, that lead to antimicrobics resistant bacteria, and the large employ of invasive medical devices and implants. A 2015 European survey, considering a representative set of intensive care unit patients, showed that 6% of them had pneumonia, 4% was affected from bacteraemia and 2% had a urinary tract infection; 97% of the patients afflicted with pneumonia was intubated, 43% of the ones with bacteraemia had a venous catheter and 97% of the patients with an urinary tract infection was bladder catheterised. Moreover, it has been determined that the main etiological factors were specific microorganisms: Pseudomonas aeruginosa was responsible of most of the lower respiratory tract infections, coagulase-negative staphylococci and Staphylococcus aureus were related to bacteraemia and Escherichia coli was connected to urinary tract infections. Bacteria can easily adhere on medical devices and develop a bacterial biocoenosis named biofilm; the structural, morphological and biochemical characteristics of biofilm render it particularly resistant to conventional antimicrobic treatments, that turn out to be inefficient in infections therapy. Over the years, scientists tried to identify the best strategy to prevent infections related to the use of medical devices and implants, investigating the possibility to inhibit microorganism’s adhesion on biomaterials. Different methods are available to modify the surface of inorganic materials and in this thesis work the antibacterial efficacy of glass surfaces, functionalised with a self-assembled monolayers of silver sulfadiazine and prepared using the layer-by-layer approach, was tested. This technique allows obtaining a stable monomolecular layer of silver sulfadiazine: when the surface is put in contact with a thin layer of a bacteria suspension, it releases silver ions in a controlled manner. The antimicrobic tests were performed on three different bacteria species, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, selected both because they are typical in most of the healthcare-associated infections, and because they are commonly used for evaluating the antimicrobic activity of drugs. The antibacterial effect observed in the experiments is ascribed to silver ions release; in fact, glass surfaces functionalised only with thiols groups or with sulfadiazine that was not salified with silver, did not show any significant microbicidal effect. The Ag+ species has a multiple mechanism of action on bacteria cells, therefore microorganisms are not able to easily develop resistance; nowadays, it is not possible to find in literature toxic phenomena caused by silver, in concentration comparable with those released from self-assembled silver sulfadiazine monolayers, studied in this thesis. Furthermore, these functionalised surfaces are an interesting starting point for the potential development of anti-biofilm materials, that can be employed in the production of medical devices, implants, sanitary equipment and the like.
In Italia ogni anno, circa mezzo milione dei pazienti ricoverati si ammala di un’infezione contratta in ospedale, ovvero tra il 5 e il 17%, di cui il 3% muore. Queste patologie sono dette anche nosocomiali e sono definite come infezioni che insorgono 48 ore dopo l’ingresso in ospedale o in seguito alla dimissione e che non erano manifeste, né in incubazione, al momento del ricovero. Rientrano in questa categoria anche tutte le infezioni che si riscontrano in ambienti extra-ospedalieri di carattere sanitario (Infezioni Correlate all’Assistenza – ICA), come le residenze per anziani e gli ambulatori. Le ICA hanno un elevato impatto sia sociale, sia economico, e rappresentano un rischio per la salute per i pazienti, il personale ospedaliero, gli assistenti volontari, gli studenti e i tirocinanti. Tra i fattori di rischio vi sono l’ampio utilizzo degli antibiotici, che porta a fenomeni di resistenza, e il largo impiego di dispositivi medici invasivi. Da uno studio europeo del 2015 è emerso che su un campione rappresentativo di pazienti ricoverati in reparti di terapia intensiva, il 6% era affetta da polmonite, il 4% da batteriemia e il 2% da infezioni del tratto urinario; i soggetti malati di polmonite per il 97% erano intubati, il 43% dei soggetti affetti da batteriemia avevano un catetere venoso, e il 97% delle infezioni urinarie erano riconducibili all’utilizzo del catetere urinario. Inoltre, è stato determinato che i fattori eziologici più comuni sono specifici microrganismi: Pseudomonas aeruginosa è responsabile delle infezioni delle basse vie respiratorie, stafilococchi coagulasi-negativi e Staphylococcus aureus sono legati ai casi di batteriemia ed Escherichia coli è correlato alle infezioni urinarie. I batteri aderiscono facilmente al dispositivo medico, sviluppando una biocenosi batterica denominata biofilm; le caratteristiche strutturali, morfologiche e biochimiche del biofilm lo rendono resistente ai trattamenti antimicrobici convenzionali, che risultano così inefficaci nella cura delle infezioni. Nel corso degli anni si è dunque cercato di individuare la strategia migliore per prevenire le infezioni associate ai dispositivi medici, considerando la possibilità di inibire l’adesione dei microrganismi ai biomateriali, modificandone le caratteristiche superficiali. In questo lavoro di tesi è stata testata l’efficacia antibatterica di una superficie vetrosa funzionalizzata con un monostrato autoassemblato di sulfadiazina d’argento, preparata con l’approccio layer-by-layer. Questa tecnica ha consentito di ottenere uno strato monomolecolare stabile di sulfadiazina d’argento, che rilascia in modo controllato ioni argento, quando la superficie funzionalizzata è posta a contatto con un sottile strato di sospensione microbica. I saggi antimicrobici sono stati realizzati su tre specie batteriche, Staphylococcus aureus, Escherichia coli e Pseudomonas aeruginosa, scelte sia perché rappresentative della maggior parte delle infezioni associate all’assistenza, sia perché comunemente utilizzate per valutare l’attività antimicrobica dei farmaci. L’effetto antibatterico risultante dalle prove sperimentali è attribuibile al rilascio degli ioni argento, poiché superfici vetrose funzionalizzate con soli gruppi tiolici o con sulfadiazina non salificata con il metallo, non hanno dimostrato un effetto microbicida apprezzabile. La specie Ag+ ha un meccanismo d’azione antimicrobico multiplo sulle cellule batteriche, che quindi difficilmente sviluppano resistenza; ad oggi in letteratura non risultano fenomeni tossici imputabili a concentrazioni d’argento, paragonabili a quelle rilasciate dalle superfici oggetto di questa tesi. Esse rappresentano quindi un’interessante punto di partenza, per il possibile sviluppo di materiali anti-biofilm, utilizzabili nella produzione di dispositivi medici, impianti, apparecchiature sanitarie e simili.
Azione antibatterica di monostrati autoassemblati di sulfadiazina d’argento
ROSALIA, MARIELLA
2018/2019
Abstract
Every year in Italy, about half million of hospitalised patients contract an infection in hospital, namely between 5 and 17%, 3% of which die. These illnesses are referred to as nosocomial diseases and are defined as infections that arise 48 hours after the entrance in hospital or following the discharge; these infections were neither manifest, nor in incubation in the affected person, at the time of the hospitalisation. In this category can also be included the infections that occur in out-of-hospital healthcare locations (Healthcare-Associated Infections – HAIs), such as care home for the elderly and day hospital. HAIs have a strong impact both on the social and on the economic sphere, implying a health risk not only for patients, but also for hospital staff, volunteer assistants, students and interns. Risk factors include the wide use of antibiotics, that lead to antimicrobics resistant bacteria, and the large employ of invasive medical devices and implants. A 2015 European survey, considering a representative set of intensive care unit patients, showed that 6% of them had pneumonia, 4% was affected from bacteraemia and 2% had a urinary tract infection; 97% of the patients afflicted with pneumonia was intubated, 43% of the ones with bacteraemia had a venous catheter and 97% of the patients with an urinary tract infection was bladder catheterised. Moreover, it has been determined that the main etiological factors were specific microorganisms: Pseudomonas aeruginosa was responsible of most of the lower respiratory tract infections, coagulase-negative staphylococci and Staphylococcus aureus were related to bacteraemia and Escherichia coli was connected to urinary tract infections. Bacteria can easily adhere on medical devices and develop a bacterial biocoenosis named biofilm; the structural, morphological and biochemical characteristics of biofilm render it particularly resistant to conventional antimicrobic treatments, that turn out to be inefficient in infections therapy. Over the years, scientists tried to identify the best strategy to prevent infections related to the use of medical devices and implants, investigating the possibility to inhibit microorganism’s adhesion on biomaterials. Different methods are available to modify the surface of inorganic materials and in this thesis work the antibacterial efficacy of glass surfaces, functionalised with a self-assembled monolayers of silver sulfadiazine and prepared using the layer-by-layer approach, was tested. This technique allows obtaining a stable monomolecular layer of silver sulfadiazine: when the surface is put in contact with a thin layer of a bacteria suspension, it releases silver ions in a controlled manner. The antimicrobic tests were performed on three different bacteria species, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, selected both because they are typical in most of the healthcare-associated infections, and because they are commonly used for evaluating the antimicrobic activity of drugs. The antibacterial effect observed in the experiments is ascribed to silver ions release; in fact, glass surfaces functionalised only with thiols groups or with sulfadiazine that was not salified with silver, did not show any significant microbicidal effect. The Ag+ species has a multiple mechanism of action on bacteria cells, therefore microorganisms are not able to easily develop resistance; nowadays, it is not possible to find in literature toxic phenomena caused by silver, in concentration comparable with those released from self-assembled silver sulfadiazine monolayers, studied in this thesis. Furthermore, these functionalised surfaces are an interesting starting point for the potential development of anti-biofilm materials, that can be employed in the production of medical devices, implants, sanitary equipment and the like.È consentito all'utente scaricare e condividere i documenti disponibili a testo pieno in UNITESI UNIPV nel rispetto della licenza Creative Commons del tipo CC BY NC ND.
Per maggiori informazioni e per verifiche sull'eventuale disponibilità del file scrivere a: unitesi@unipv.it.
https://hdl.handle.net/20.500.14239/23559